做了兩回復健治療,
先前不小心拉傷的左側肩膊,
總算是再度復活了(感動)
為了減少用手,這段時間的下廚大多簡單一鍋煮,
Batch# 的餐盤們也天天上桌,
然後所有用具餐盤通通進洗碗機伺候,
輕鬆多了 ❤️
___
這次的 Batch# 二團今晚結團,
謝謝大家喜愛,希望買的朋友也都會喜歡。
然後接著明天、
又有一個重量級的補貨團要分享給大家,
就是 「#WMFFusiontec鍋具二團」 來了!
除了上回開團的湯鍋們 & 平底不沾煎鍋之外,
這回還多加了大家先前一直敲碗的品項:
#Fusiontec快力鍋 (4.5L+主廚刀組合 / 6.5L )
#Fusiontec單手鍋16cm
顏色部分,上回任性的只開了我愛的「#棕銅色」,
這一團會加入另一個超美的主打色「#鉑灰色」,
都是超有氣質的顏色 ❤️
WMF Fusiontec 的鍋具我實實在在愛用中。
我尤其要大推單手鍋,是一只超級實用的小鍋!
幾乎天天會用到它。
而且這一團的價格也很~漂~亮~。
之前開團的分享文和食譜,
連結等等我放在留言中給你們參考。
___
同步我們一起開 #KODU茶與香料補貨團。
包裝超美的 KODU,風味也非常非常棒;
5款茶裡最愛「法國人茶」&「蘋果派茶」,
5款香料中 「Perri Perri」&「Cirtus Kick」大喜歡,
料理中加上一些,真的是食物魔法啊。
這次 KODU 補貨團品項齊全,
組合式禮盒、單瓶(也是小禮盒包裝喔)、
還有 #補充包 可以選購。
___
明天一樣中午 12 點放上購買連結。
先說:快力鍋的數量相當少,
想買的朋友動作要快一點喔。
8 月份的補貨團比較密集,
( 都是我愛用又口碑好的日常愛用品 )
因為我想把9月空下來,
我們家的生日月,想輕鬆的慶祝著過 🥳
而且9月有新計劃正在進行中,
可能會有我自己都沒想像過可以分享的夢幻逸品...
我超級期待 ❤️
至於是什麼就讓我先保密一下吧 😊
同時也有1部Youtube影片,追蹤數超過14萬的網紅品味壹番 A Matter of Taste,也在其Youtube影片中提到,盲飲7支威士忌 林老師答對幾支?【林一峰Whisky School威士忌第129課】 上個星期我們討論了品酒時「如何鍛鍊味覺」,這個星期我們更進階了,我們要來玩玩「盲飲」的遊戲。 我們找來7支不同產地的威士忌,為了提升難度,刻意挑了若干不太好辨識的酒款。 包括具淡淡泥煤風味的印度保羅約翰泥煤單...
「batch是什麼」的推薦目錄:
batch是什麼 在 孫弘岳-人力資源管理的世界 Facebook 的最讚貼文
關於AI面試的假神準
.
我們實驗室透過產學合作與鳯凰互動以及震旦雲合力開發的AI面試系統,最近在工商/經濟/數位時代/天下雜誌Cheers/經理人/能力雜誌等媒體陸續報導,當然就開始引起許多質疑的聲音,這幾乎是所有產品創新與實驗都會面臨的挑戰。其中有一點,就是我們的AI面試模型,是否有"過度擬合"的問題,而造成"假神準"。我的答案是,”不排除這個可能性”。
.
所謂過度擬合 (Overfitting),簡單說就是在機器學習或統計相關的過程中,把原本不相關的兩件事在大量數據中,建立出假性相關的結果,當我們把這個訓練好的預測模型用到下一批不同數據中,就會失準。例如,我們想預測什麼樣的學生適合當HR,找了一批當HR的履歷來分析並訓練AI模型,結果這批HR大多都來自北部,就會得到住在北部的學生比較適合當HR的假相關。
.
要降低過度擬合的可能,在技術上有一些方式,例如進行更多不同樣本的交叉驗證、去掉不相關的特徵值(例如: 來自北中南東)、在模型訓練過程中進行批歸一化 (Batch Normalization)與正則化(Dropout)。但以上都是只是表面的技術層次,更重要的是模型背後有沒有理論基礎,也就是變項與變項之間的關係詮釋。
.
表情除了反應情緒,可否反應一個人在特定情境下的行為傾向或社交印象,背後有透鏡模型(Lens Model)、 信號理論(Signaling Theory)的支持,結合電腦視覺與深度學習,形成另一支性格運算(Personality Computing)的跨域理論。筆者之前也發文分享,現代社會心理學家,已發現表情其實不盡然反應情緒,而是行為傾向或社交技巧,這背後的理論叫行為生態論 (Behavioral ecology view of facial displays, BECV)。缺乏理論的數據分析或機器學習的結果,有可能會誤導真實性。但缺乏實證數據的理論,終究只是個假設。理論與實證數據缺一不可,我們才能有較高的信心來”參考”這些數據結果與理論。
.
過去研究人類表情的大宗師是心理學教授Paul Ekman,他結合電腦視覺技術,捕捉人類肉眼難以察覺的微表情 - 學術界定義是五分之一秒以下,突然呈現的面部肌肉變化。早期是用臉部68個移動點(不含額頭),現在有些學者會抓到86點到120個點以上不定(含額頭),而這些微表情大都是由人類下意識情緒所觸動,最常被用來測謊,因為微表情反應當事人”可能”在說謊的情緒,且不易被當事人控制或破解。但這終究是間接的關係,就跟心跳測謊儀一樣,它測出來的是緊張,而緊張不一定等於說謊。即便如此,運用電腦視覺的AI,推估一個人是否在說謊的正確”機率”,雖然不是絕對答案,但仍比人類肉眼判斷還高。這解釋縱然Paul Ekman的基本情緒論一直備受挑戰,在學界也仍無共識,但這類技術仍被廣泛應用的原因。
.
屆至今日,我們都相信眼見為憑,也相信面試除了透過結構式面談問出應徵者過去的行為外,也能在過程中,讓面試官根據回答之外的非口語信息”判斷”一個人的性格或溝通技巧,起碼可以篩選掉一些”看起來”或”感覺”怪怪的人。但你問面試官,他們也說不出個所以然。重點是,許多相關研究發現,這類面談答案以外的弦外之音,常常被人類面試官誤判。倘若有一個工具,它的性格/溝通技巧是經過當事人自己、主管、同事、下屬、甚至客戶,以科學檢驗過的量表或工具在適當的實驗環境下進行測評,運用AI發現與當事人在真實面試中的微表情出現某種相關性,且這個模型再去測試另一批不同的應徵者也能得到不錯的預測結果,或者同一個人經過一段時間再進行一次測試,也能得到相似的結果。我們也只能說,這只是一種一致性與且正確機率較高的測評參考工具,在深度學習黑盒子下,也沒有辦法解釋什麼樣的微表情會有什麼的性格或行為傾向,這個技術仍在發展中,不代表真實答案。
.
那什麼是真實答案? 或許連當事人自己都不一定知道。 但運用在人力甄選中,雇主可能更在意的是當事人在職場環境中展現出的行為以及利害關係人對當事人的評價,至於當事人內心世界在想什麼? 或真實的他/她是什麼樣的人?使用者大多不是太在意!
.
https://www.ithome.com.tw/news/143000
.
AI面試是一個仍在發展中的技術,除了微表情,接下來我們會結合聲律、音質、上半身肢體動作,研究與測試這個測評工具對於性格、印象管理(包括自我包裝/欺騙/隱瞞)的信效度,以及應徵者在不同AI面試介面下的不同行為反應。關於我們的相關研究,除了專利技術外,都公開發表在SCI的期刊中,歡迎大家指教,讓這個工具可以更客觀更準確地被大眾使用:
.
https://doi.org/10.1007/s11554-021-01071-5
https://doi.org/10.1186/s13673-020-0208-3
https://doi.org/10.1109/ACCESS.2019.2902863
batch是什麼 在 Taipei Ethereum Meetup Facebook 的精選貼文
📜 [專欄新文章] [ZKP 讀書會] Trust Token Browser API
✍️ Yuren Ju
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Trust Token API 是一個正在標準化的瀏覽器 API,主要的目的是在保護隱私的前提下提供跨站授權 (Cross-domain authorization) 的功能,以前如果需要跨站追蹤或授權通常都使用有隱私疑慮的 Cookies 機制,而 Trust Token 則是希望在保護隱私的前提下完成相同的功能。
會在 ZKP (Zero-knowledge proof) 讀書會研究 Trust Token 主要是這個 API 採用了零知識證明來保護隱私,這也是這次讀書會中少見跟區塊鏈無關的零知識證明應用。
問題
大家應該都有點了一個產品的網頁後,很快的就在 Facebook 或是 Google 上面看到相關的廣告。但是產品網頁並不是在 Facebook 上面,他怎麼會知道我看了這個產品的頁面?
通常這都是透過 Cookie 來做跨網站追蹤來記錄你在網路上的瀏覽行為。以 Facebook 為例。
當使用者登入 Facebook 之後,Facebook 會透過 Cookie 放一段識別碼在瀏覽器裡面,當使用者造訪了有安裝 Facebook SDK 來提供「讚」功能的網頁時,瀏覽器在載入 SDK 時會再度夾帶這個識別碼,此時 Facebook 就會知道你造訪了特定的網頁並且記錄下來了。如此一來再搭配其他不同管道的追蹤方式,Facebook 就可以建構出特定使用者在網路上瀏覽的軌跡,從你的瀏覽紀錄推敲喜好,餵給你 Facebook 最想給你看的廣告了。
不過跨站追蹤也不是只能用在廣告這樣的應用上,像是 CDN (Content Delivery Network) 也是一個應用場景。CDN 服務 Cloudflare 提供服務的同時會利用 Captcha 先來確定進入網站的是不是真人或是機器人。而他希望使用者如果是真人時下次造訪同時也是採用 Cloudflare 服務的網站不要再跳出 Captcha 驗證訊息。
雖然 Cloudflare 也需要跨站驗證的功能來完成他們的服務,但是相較於 Google 或 Facebook 來說他們是比較沒那麼想知道使用者的隱私。有沒有什麼辦法可以保護使用者隱私的狀況下還能完成跨站驗證呢?
這就是今天要講的新 API: Trust Token。
Trust Token API - The Chromium Projects
Trust Token / Privacy Pass 簡介
Trust Token 其實是由 Privacy Pass 延伸而來。Privacy Pass 就是由 Cloudflare 所開發的實驗性瀏覽器延伸套件實作一個驗證機制,可以在不透漏過多使用者隱私的前提下實作跨站驗證。而 Trust Token 則是標準化的 Privacy Pass,所以兩個運作機制類似,但是實作方式稍有不同。
先看一下 Privacy Pass 是如何使用。因為這是實驗性的瀏覽器延伸套件所以看起來有點陽春,不過大致上還是可以了解整個概念。
以 hCaptcha 跟 Cloudflare 的應用為例,使用者第一次進到由 Cloudflare 提供服務的網站時,網站會跳出一些人類才可以解答的問題比如說「挑出以下是汽車的圖片」。
當使用者答對問題後,Cloudflare 會回傳若干組 blind token,這些 blind token 還會需要經過 unblind 後才會變成真正可以使用的 token,這個過程為 issue token。如上圖所示假設使用者這次驗證拿到了 30 個 token,在每次造訪由 Cloudflare 服務的網站時就會用掉一個 token,這個步驟稱為 redeem token。
但這個機制最重要的地方在於 Cloudflare 並無法把 issue token 跟 redeem token 這兩個階段的使用者連結在一起,也就是說如果 Alice, Bob 跟 Chris 都曾經通過 Captcha 測試並且獲得了 Token,但是在後續瀏覽不同網站時把 token 兌換掉時,Clouldflare 並無法區分哪個 token 是來自 Bob,哪個 token 是來自 Alice,但是只要持有這種 token 就代表持有者已經通過了 Captcha 的挑戰證明為真人。
但這樣的機制要怎麼完成呢?以下我們會透過多個步驟的例子來解釋如何達成這個目的。不過在那之前我們要先講一下 Privacy Pass 所用到的零知識證明。
零知識證明 (Zero-knowledge proof)
零知識證明是一種方法在不揭露某個祕密的狀態下,證明他自己知道那個秘密。
Rahil Arora 在 stackexchange 上寫的比喻我覺得是相對好理解的,下面簡單的翻譯一下:
假設 Alice 有超能力可以幾秒內算出樹木上面有幾片樹葉,如何在不告訴 Bob 超能力是怎麼運作並且也不告訴 Bob 有多少片葉子的狀況下證明 Alice 有超能力?我們可以設計一個流程來證明這件事情。
Alice 先把眼睛閉起來,請 Bob 選擇拿掉樹上的一片葉子或不拿掉。當 Alice 睜開眼睛的時候,告訴 Bob 他有沒有拿掉葉子。如果一次正確的話確實有可能是 Alice 幸運猜到,但是如果這個過程連續很多次時 Alice 真的擁有數葉子的超能力的機率就愈來愈高。
而零知識證明的原理大致上就是這樣,你可以用一個流程來證明你知道某個秘密,即使你不真的揭露這個秘密到底是什麼,以上面的例子來說,這個秘密就是超能力運作的方式。
以上就是零知識證明的概念,不過要完成零知識證明有很多各式各樣的方式,今天我們要介紹的是 Trust Token 所使用的零知識證明:DLEQ。
DLEQ (Discrete Logarithm Equivalence Proof)
說明一下以下如果小寫的變數如 c, s 都是純量 (Scalar),如果是大寫如 G, H則是橢圓曲線上面的點 (Point),如果是 vG 則一樣是點,計算方式則是 G 連續相加 v 次,這跟一般的乘法不同,有興趣可以程式前沿的《橢圓曲線加密演算法》一文解釋得比較詳細。
DLEQ 有一個前提,在系統中的所有人都知道公開的 G 跟 H 兩個點,此時以下等式會成立:
假設 Peggy 擁有一個秘密 s 要向 Victor 證明他知道 s 為何,並且在這個過程中不揭露 s 真正的數值,此時 Victor 可以產生一個隨機數 c 傳送給 Peggy,而 Peggy 則會再產生一個隨機數 v 並且產生 r,並且附上 vG, vH, sG, sH:
r = v - cs
所以 Victor 會得到 r, sG, sH, vG, vH 再加上他已經知道的 G, H。這個時候如果 Victor 計算出以下兩個等式就代表 Peggy 知道 s 的真正數值:
vG = rG + c(sG)vH = rH + c(sH)
我們舉第二個等式作為例子化簡:
vH = rH + c(sH) // 把 r 展開成 v - csvH = (v - cs)H + c(sH) // (v - cs)H 展開成 vH - csHvH = vH - c(sH) + c(sH) // 正負 c(sH) 消掉vH = vH
這樣只有 Peggy 知道 s 的狀況下才能給出 r,所以這樣就可以證明 Peggy 確實知道 s。
從簡易到實際的情境
Privacy Pass 網站上透過了循序漸進的七種情境從最簡單的假設到最後面實際使用的情境來講解整個機制是怎麼運作的。本文也用相同的方式來解釋各種情境,不過前面的例子就會相對比較天真一點,就請大家一步步的往下看。
基本上整個過程是透過一種叫做 Blind Signature 的方式搭配上零知識證明完成的,以下參與的角色分為 Client 與 Server,並且都會有兩個階段 issue 與 redeem token。
Scenario 1
如果我們要設計一個這樣可以兌換 token 來確認身分的系統,其中有一個方法是透過橢圓曲線 (elliptic curve) 完成。Client 挑選一個在橢圓曲線上的點 T 並且傳送給 Server,Server 收到後透過一個只有 Server 知道的純量 (scalar) s 對 T 運算後得到 sT 並且回傳給 Client,這個產生 sT 的過程稱為 Sign Point,不過實際上運作的原理就是橢圓曲線上的連續加法運算。
SignPoint(T, s) => sT
等到 Client 需要兌換時只要把 T 跟 sT 給 Server,Server 可以收到 T 的時候再 Sign Point 一次看看是不是 sT 就知道是否曾經 issue 過這個 token。
Issue
以下的範例,左邊都是 Client, 右邊都是 Server。 -> 代表 Client 發送給 Server,反之亦然。
// Client 發送 T 給 Server, 然後得到 sT
T -> <- sT
Redeem
// Client 要 redeem token 時,傳出 T 與 sT
T, sT ->
問題:Linkability
因為 Server 在 issue 的時候已經知道了 T,所以基本上 Server 可以透過這項資訊可以把 issue 階段跟 redeem 階段的人連結起來進而知道 Client 的行為。
Scenario 2
要解決上面的問題,其中一個方法是透過 Blind Signature 達成。Client 不送出 T,而是先透過 BlindPoint 的方式產生 bT 跟 b,接下來再送給 Server bT。Server 收到 bT 之後,同樣的透過 Sign Point 的方式產生結果,不一樣的地方是情境 1 是用 T,而這邊則用 bT 來作 Sign Point,所以得出來的結果是 s(bT)。
Client:BlindPoint(T) => (bT, b)
Server:SignPoint(bT, s) => sbT
而 Blind Signature 跟 Sign Point 具備了交換律的特性,所以得到 s(bT) 後可以透過原本 Client 已知的 b 進行 Unblind:
UnblindPoint(sbT, b) => sT
這樣一來在 Redeem 的時候就可以送出 T, sT 給 Server 了,而且透過 SignPoint(T, s) 得出結果 sT’ 如果符合 Client 傳來的 sT 就代表確實 Server 曾經簽過這個被 blind 的點,同時因為 T 從來都沒有送到 Server 過,所以 Server 也無法將 issue 與 redeem 階段的 Client 連結在一起。
Issue
bT -> <- s(bT)
Redeem
T, sT ->
問題:Malleability
以上的流程其實也有另外一個大問題,因為有交換律的關係,當 Client 透過一個任意值 a 放入 BlindPoint 時產生的 a(sT) 就會等於 s(aT):
BlindPoint(sT) => a(sT), a// a(sT) === s(aT)
此時如果將 aT 跟 s(aT) 送給 Server Redeem,此時因為
SignPoint(aT, s) => s(aT)
所以就可以兌換了,這樣造成 Client 可以無限地用任意數值兌換 token。
Scenario 3
這次我們讓 Client 先選擇一個純數 t,並且透過一種單向的 hash 方式來產生一個在橢圓曲線上的點 T,並且在 redeem 階段時原本是送出 T, sT 改成送出 t, sT。
因為 redeem 要送出的是 t,上個情境時透過任意數 a 來產生 s(aT) 的方法就沒辦法用了,因為 t 跟 sT 兩個參數之間並不是單純的再透過一次 BlindPoint() 就可以得到,所以就沒辦法無限兌換了。
Issue
T = Hash(t) bT -> <- sbT
Redeem
t, sT ->
問題:Redemption hijacking
在這個例子裏面,Client 其實是沒有必要傳送 sT 的,因為 Server 僅需要 t 就可以計算出 sT,額外傳送 sT 可能會導致潛在的 Redemption hijacking 問題,如果在不安全的通道上傳輸 t, sT 就有可能這個 redemption 被劫持作為其他的用途。
不過在網站上沒講出實際上要怎麼利用這個問題,但是少傳一個可以計算出來的資料總是好的。Client 只要證明他知道 sT 就好,而這可以透過 HMAC (Hash-based Message Authentication Code) 達成。
Scenario 4
步驟跟前面都一樣,唯一不一樣的地方是 redeem 的時候原本是傳 t, sT,現在則改傳 t, M, HMAC(sT, M),如果再介紹 HMAC 篇幅會太大,這邊就不解釋了,但可以是作是一個標準的 salt 方式讓 Hash 出來的結果不容易受到暴力破解。
這樣的特性在這個情境用很適合,因為 Server 透過 t 就可以計算出 sT,透過公開傳遞的 M 可以輕易地驗證 client 端是否持有 sT。
Issue
T = Hash(t) bT -> <- sbT
Redeem
t, M, HMAC(sT, M) ->
問題:Tagging
這邊的問題在於 Server 可以在 issue 階段的時候用不一樣的 s1, s2, s3 等來發出不一樣的 sT’,這樣 Server 在 Redeem 階段就可以得知 client 是哪一個 s。所以 Server 需要證明自己每次都用同樣的 s 同時又不透漏 s 這個純亮。
要解決這個問題就需要用到前面我們講解的零知識證明 DLEQ 了。
Scenario 5
前面的 DLEQ 講解有提到,如果有 Peggy 有一個 s 秘密純量,我們可以透過 DLEQ 來證明 Peggy 知道 s,但是又不透漏 s 真正的數值,而在 Privacy Pass 的機制裡面,Server 需要證明自己每次都用 s,但是卻又不用揭露真正的數值。
在 Issue 階段 Client 做的事情還是一樣傳 bT 給 Server 端,但 Server 端的回應就不一樣了,這次 Server 會回傳 sbT 與一個 DLEQ 證明,證明自己正在用同一個 s。
首先根據 DLEQ 的假設,Server 會需要先公開一組 G, H 給所有的 Client。而在 Privacy Pass 的實作中則是公開了 G 給所有 Client,而 H 則改用 bT 代替。
回傳的時候 Server 要證明自己仍然使用同一個 s 發出 token,所以附上了一個 DLEQ 的證明 r = v - cs,Client 只要算出以下算式相等就可證明 Server 仍然用同一個 s (記住了 H 已經改用 bT 代替,此時 client 也有 sbT 也就是 sH):
vH = rH + c(sH) // H 換成 bTvbT = rbT + c(sbT) // 把 r 展開成 v - csvbT = (v - cs)bT + c(sbT) // (v - cs)bT 展開成 vbT - csbTvbT = vbT - c(sbT) + c(sbT) // 正負 c(sbT) 消掉vbT = vbT
這樣就可以證明 Server 依然用同一個 s。
Issue
T = Hash(t) bT -> <- sbT, DLEQ(bT:sbT == G:sG)
Redeem
t, M, HMAC(sT, M) ->
問題:only one redemption per issuance
到這邊基本上 Privacy Pass 的原理已經解釋得差不多了,不過這邊有個問題是一次只發一個 token 太少,應該要一次可以發多個 token。這邊我要跳過源文中提到的 Scenario 6 解釋最後的結果。
Scenario 7
由於一次僅產生一個 redeem token 太沒效率了,如果同時發很多次,每次都產生一個 proof 也不是非常有效率,而 DLEQ 有一個延伸的用法 “batch” 可以一次產生多個 token, 並且只有使用一個 Proof 就可以驗證所有 token 是否合法,這樣就可以大大的降低頻寬需求。
不過這邊我們就不贅述 Batch DLEQ 的原理了,文末我會提及一些比較有用的連結跟確切的源碼片段讓有興趣的人可以更快速的追蹤到源碼片段。
Issue
T1 = Hash(t1) T2 = Hash(t2)T3 = Hash(t3)b1T1 ->b2T2 ->b3T3 -> c1,c2,c3 = H(G,sG,b1T1,b2T2,b3T3,s(b1T1),s(b2T2),s(b3T3)) <- sb1T1 <- sb2T2 <- sb3T3 <- DLEQ(c1b1T1+c2b2T2+c3b3T3:s(c1b1T1+c2b2T2+c3b3T3) == G: sG)
Redeem
t1, M, HMAC(sT1, M) ->
結論
Privacy Token / Trust Token API 透過零知識證明的方式來建立了一個不需要透漏太多隱私也可以達成跟 cookie 相同效果的驗證方式,期待可以改變目前許多廣告巨頭透過 cookie 過分的追蹤使用者隱私的作法。
不過我在 Trust Token API Explainer 裡面看到這個協議裡面的延伸作法還可以夾帶 Metadata 進去,而協議制定的過程中其實廣告龍頭 Google 也參與其中,希望這份協議還是可以保持中立,盡可能地讓最後版本可以有效的在保護隱私的情況下完成 Cross-domain authorization 的功能。
參考資料
IETF Privacy Pass docs
Privacy Pass: The Protocol
Privacy Pass: Architectural Framework
Privacy Pass: HTTP API
Cloudflare
Supporting the latest version of the Privacy Pass Protocol (cloudflare.com)
Chinese: Cloudflare支持最新的Privacy Pass扩展_推动协议标准化
Other
Privacy Pass official website
Getting started with Trust Tokens (web.dev)
WICG Trust Token API Explainer
Non-interactive zero-knowledge (NIZK) proofs for the equality (EQ) of discrete logarithms (DL) (asecuritysite.com) 這個網站非常實用,列了很多零知識證明的源碼參考,但可惜的是 DLEQ 這個演算法講解有錯,讓我在理解演算法的時候撞牆很久。所以使用的時候請多加小心,源碼應該是可以參考的,解釋的話需要斟酌一下。
關鍵源碼
這邊我貼幾段覺得很有用的源碼。
privacy pass 提供的伺服器端產生 Proof 的源碼
privacy pass 提供的瀏覽器端產生 BlindPoint 的源碼
github dedis/kyber 產生 Proof 的源碼
[ZKP 讀書會] Trust Token Browser API was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
batch是什麼 在 品味壹番 A Matter of Taste Youtube 的最讚貼文
盲飲7支威士忌 林老師答對幾支?【林一峰Whisky School威士忌第129課】
上個星期我們討論了品酒時「如何鍛鍊味覺」,這個星期我們更進階了,我們要來玩玩「盲飲」的遊戲。
我們找來7支不同產地的威士忌,為了提升難度,刻意挑了若干不太好辨識的酒款。
包括具淡淡泥煤風味的印度保羅約翰泥煤單一麥芽印度威士忌(Paul John Edited Peated Single Malt Indian Whisky),以及同樣具備淡雅泥煤氣息的波摩艾雷12年單一麥芽蘇格蘭威士忌(Bowmore 12 YO Islay Single Malt Scotch Whisky);這樣的組合,要在7支威士忌的盲飲中辨識出來,真的十分困難。
關於「什麼叫盲飲」?威士忌達人學院首席顧問林一峰是這樣解釋的:「『盲飲』不是『瞎喝』,而是透過盲品的過程,鍛鍊自己的嗅覺跟味覺,了解每一支酒的製程。」
林一峰表示:「在『專家級』的盲飲中,專家會在腦子裡面,有一個很清楚的架構,專家們在品飲的每一個細節的過程當中,把那個架構Fit in進去之後,就可以知道,今天喝的是什麼東西而判斷出來。其實這是有邏輯的、理性的、有理可循的,所以盲品其實不難。」
面對「盲飲」,林一峰要如何一支、一支地分析推理?
到底林一峰自豪的「好鼻子」,能不能成功分辨出不容易辨識的「印度保羅約翰泥煤單一麥芽印度威士忌」與「波摩艾雷12年單一麥芽蘇格蘭威士忌」?
究竟7支威士忌的盲飲中,林老師能夠答對幾支?
我們忠實地呈現了整個盲飲的推理過程,歡迎大家一起加入這個自我鍛鍊的遊戲。
(製作/企劃/撰文:高婉珮,攝影:陳思明)
【警語:禁止酒駕。飲酒過量,有礙健康。未滿十八歲請勿飲酒。】
【正確答案1至7號在這裡】
#Glenfiddich Solera Reserve 15 Years Old
#Jim Beam Signature Craft 12 Years Kentucky Straight Bourbon Whiskey
#Teeling Stout Cask Small Batch Collaboration Whiskey
#Bowmore 12 YO Islay Single Malt Scotch Whisky
#白州單一純麥威士忌
#Black Velvet Reserve 8 Years Old Canadian Whisky
#Paul John Edited Peated Single Malt Indian Whisky 46%
batch是什麼 在 深度学习中的batch size - 宿宝臣的博客 的推薦與評價
CNN在图像处理中的应用是自然而然的,在LNP中的应用确实开拓了眼界,尤其是长条形的卷积核真的很富有想象力!可能,深度学习比拼的是想象力,而不是编码。 ... <看更多>
batch是什麼 在 什么是Batch Normalization 批标准化(深度学习deep learning) 的推薦與評價
Batch Normalization, 批标准化, 和普通的数据标准化类似, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在之前Normalization 的简介 ... ... <看更多>