【後疫情時代中國面對的經濟環境】
本文嘗試用一個廣角、簡略但直入重點的方式分析中國在疫情之後所面對的全球經濟環境。
國家競爭力的經濟學概念與中國縣競爭制度
根據經濟學比較優勢定理,國家之間的競爭始終被比較成本所局限。而在分析國家競爭力上,我摒棄華而不實的哈佛商學院Michael Poter的鑽石競爭理論,回歸最基本但正確的經濟學成本概念,其中尤受諾貝爾經濟學獎得主R. Coase的「The Problem of Social Costs」鴻文啓發:
國家競爭成本 = 直接生產成本 + 間接生產成本 + 制度費用
特別說明我所謂的「間接生產成本」更接近上頭成本,本身除了牽涉到整體租值外也會涉及到產業乃至於社會國家的路徑依賴。
在相同供應層面,某國是否可以用更低成本下滿足同樣的需求,以及是否可以善用比較優勢定理。後者包含了前者的同時,也是國家與國家之間的角色不單純只是競爭關係,而是有更多供需關係。後者之所以尤為重要在於「買方與賣方永遠不存在競爭關係」。因此在供應鏈上彼此依賴的買賣雙方國家,依賴程度越深入越廣泛,則敵對的成本將等比級數增加。
換個角度來說,Covid-19疫情本身帶來上述三種成本的同步增加。這也意味著在疫苗逐漸普及的後疫情時代,能夠以更快速地降低上述三種成本的國家將在新一輪全球經濟重新平衡的過程中取得更佳的競爭優勢地位。
在張五常「The Economic Structure of China」一書闡述的中國曾有的1990年代末到2010年間之縣競爭制度下,中國借此享受人類近代少有的超低制度費用與間接生產成本,佐以原本享有的人口紅利帶來的在中低階工廠流水線上較低直接生產成本,中國製造橫掃全世界九成以上的中低階工業領域。
但隨著中國中央政府出台勞動法與加強反托拉斯管制與大大小小的管制措施,上述獨有的縣競爭制度似乎已不復存在。這也為疫情後面對全世界新的經濟環境中國是否還具有經濟學謂「低制度費用」的高彈性與快速適應力埋下變數。
瞭解這個重要局限條件改變後,我們來看看疫情後中國所面對的全球經濟挑戰有哪些。
1 全球通貨膨脹可能帶給中國輸入性通膨
美國建國以來90%以上的M0貨幣發行量是在最近15年內產生,尤其疫情後Fed諸多舉措都可說是「瘋狂印鈔」,在世界多數原物料與貿易均以美元定價與結算的前提下,世界性通貨膨脹必然來到。
站在2021年5月這個時間點看,美國股市、房市、債市與全世界的大宗期貨、能源價格都受到局部性通膨影響,尤其主要農產品、金屬期貨價格多在52周以來新高。(見圖)
(美國M0通貨)
(美國股市)
(美國房市)
(美國債市)
(石油價格)
中國改革開放以來相當長一段時間貨幣匯率政策緊盯美元。2010年代以後雖然改盯一籃子貨幣,但明眼人都看得出美元的比重。故,在美元瘋狂印鈔的環境下,人民幣相應的輸入性通膨也必然發生。
這一塊我們可以預測,在貨幣學 Impossible trinity law的局限,以及中國對人民幣國際化的追求下,中國人民銀行應將在近年內逐步脫鈎對美元匯率的政策,同時部分放寬外匯管制,以得到更多貨幣主權。
同時取消或降低部分關稅,以及放寬戶口管制,都可以是中國政府提高國家競爭力可能採取的措施。
二、 全球局部地區將因疫情影響出現糧食危機
很明顯Covid-19疫情影響了糧食生產與輸布,全球局部地區的糧食危機已經開始出現。根據聯合國2020年糧食安全報告估計到2020年底全球因疫情而陷入經濟衰退與飢餓的人口數達8300萬~1.32億人。其引發的糧食價格增長將加重中國輸入性通膨下,百姓生活的負擔
中國家戶支出30%花費在食物品項,又中國國內大豆需求90%依賴進口滿足,因此可預見中國的飼料與肉品市場價格恐將上揚且吃緊。
(中國主要糧食供需狀況)
全球能源市場也會因疫情與之前負油價事件影響一段時間內失去部分供給彈性,意味著能源市場價格伴隨通膨因素影響的上揚也是可以預期,這一塊同樣也會加重中國未來將面對的輸入性通膨壓力。
因此我們會看到中國在人民幣國際化推廣上會施以更大力道,例如與更多國家簽訂貨幣清算與貨幣交換協議,嘗試在糧食/能源品項上更多地採人民幣定價結算。如此方可在不過度犧牲中國世界供應煉地位的前提下,減少輸入性通膨對人民的衝擊,尤其是輸入性通膨下中國國內資本投資的資源錯置現象將可以得到一定程度約束。當然這部分中國政府應該還會採取價格管制或其他市場管制措施相佐之,但政府干預與介入本身又會帶來更多訊息費用、交易費用,甚至政府本身就成為資源錯置的問題根本,也是極為可能。這些都是身為投資人的我們值得持續觀察與因應。
三、 中美衝突與戰爭風險提高
如前述,國家邊際競爭成本,尤其邊際間接生產成本與邊際制度費用,增加速率大過他國之速率,則一國之國力衰退,或更精准地說,國家相對競爭優勢衰退。反之則可視為國家相對競爭優勢增加。
在人民幣國際化過程將直接與美元產生競爭關係且削弱美國對全球徵收「美元稅」的能力,經濟邏輯上的效果是:2008年金融危機後的QE之所以沒有在美國發生嚴重通膨,正是因為美元在國際貿易與國際金融的霸主地位可以對全球抽取美元稅,意味著美國可以將貨幣濫發帶來的經濟成本移轉給全世界承擔,其中以世界貿易額佔比越高者承擔越多,故身為世界第一大商品出口國的中國自然也承擔大部分苦果,這也是為何我長時間以來主張美元的地位相當程度是由中國支撐。
而在人民幣競爭之下(我們假設人民幣國際化真取得成效),美國不再能輕易移轉自身國家競爭成本給全世界時,通貨膨脹將回歸隨著貨幣發行量增長而提高,這對美國而言代表聯邦政府與州政府等一系列債券、連動債務的利息支出成本將提高,未來借貸成本也將提高。在一定程度上,美國政府或州政府可能因此停擺,甚或我們會看到州政府、市政府因此破產。
因此美國必然會嘗試在各方面阻止之。
提高上述中國的國家邊際競爭成本也無可避免會是美國未來數十年的整體戰略目標。
所以我們看到美國從President Trump任期開始,嘗試尋找各種可以提高中國國家邊際競爭成本的手段。
然而在當今真實世界供應煉、服務煉、金流、資訊流高度分工交雜的局限條件下,我推斷任何一任美國政府、智庫都難以清楚釐清自身採取的任何競爭戰略是否會帶來意料之外的後果(unintentional consequences)。
a 舉例來說,比如美國政客錯誤判斷關稅手段制裁中國會有效,於是我們看到Trump任期貿易戰初期就是違背WTO規範,片面無理對中國出口商品加重關稅或其他非關稅貿易手段。
然而真正懂經濟學邏輯者看法多如我當時寫下的預判一樣 — 如果美國以關稅手段要抑制中國出口經濟,但關稅提高幅度不夠大不夠全面的話,則中美之間的貿易逆差狀況不但不會縮減,反而在某些不同彈性系數之下會增加。(見圖)
(中國出口美國統計圖)
反之,美國經濟將因自身對中國的片面關稅障礙而受創。
更進一步,若美國政客傻到真的將制裁關稅提到夠高,足以發生抑制中國出口額的效果,則美國經濟將必須付出重大代價,其中包括美元地位將大幅動搖。如前述貨幣政策問題,不但聯邦政府利息支出將壓垮政府財政,州政府乃至市政府破產潮亦不遠。故,我們看到即便是Trump也被迫停止更瘋狂的關稅壁壘措施。
b 再以半導體產業的光刻機為例,美國施壓荷蘭ASML禁止出貨中國廠商已經付費採購的光刻機,其結果反而是給中國光刻機或EDA廠商創造市場,協助排除了原本ASML強力的競爭。從經濟學角度來看這是一件很諷刺事情。
這是因為全球光刻機市場是一個高度技術集成的天然寡頭壟斷市場,除非有類似當年ASML與日本佳能之間的技術彎道超車(浸潤式UV光刻技術)特殊情況發生,否則後來者都會因為技術認證與攻克的巨大前期投資成本而被排除於競爭之外。
然而,從經濟學競爭的角度看,美國禁止ASML對中國出口,結果反而是讓中國半導體製造廠被迫轉向投資與採購其他中國光刻機供應商,使得原本在市場上幾乎無競爭力的後者,因美國的禁令創造的「競爭真空」環境而有了成長空間。
因此我們放大時間尺度來看,20年、30年後如果中國半導體設備商有了長足的進展,肯定要回過頭感謝美國政府政府的錯誤干預所創造的商機。
說到商機身為投資人的我們可以注意,在上述政客的錯誤決策中,一些轉瞬即逝的投資機會也會因政府干預而起。例如下一點。
c. Super Micro 間諜晶片事件,2018年10月美國知名商業性雜誌Bloomberg刊登新聞「The Big Hack: How China Used a Tiny Chip to Infiltrate U.S. Companies」聲稱Super Micro這家公司利用一顆米粒大小的間諜晶片替中國政府竊取資訊。
姑且不提一顆米粒大小,本身毫無無線射頻天線的晶片在當時技術上幾乎不可能竊取什麼資訊,2年多後海潮退去,不但美國政府或Bloomberg都未提出更進一步有力證據,整件事甚至根本就被遺忘。
當年我不但寫了幾篇文章駁斥這種謬論栽贓。還親自動手買入這家粉紅單公司,短短三天就賺了台轎車。
香港2019年暴動事件、2021年新疆奴隸棉花事件、最近新冠病毒向中國求償事件...等,我們都可以看到美國政客在試圖提高中國競爭成本的過程,會創造大大小小系統性或個體性的災難風險,例如前述Super Micro因栽贓性假消息股價從$20.61美元在一兩日內崩跌至$13左右,但隨著栽贓者無力提供更多證據,市場回歸均衡的過程,截至2021年5月28日,Super Micro股價已經來到$35。
這是說,某些因政治干預造成的個體性或系統性風險,雖然屬於不可預測的風落(windfall),但其中不乏類似Super Micro的例子,在隨後回到正常的價值位置。如W. Buffett所言:市場短期是投票機,但長期是磅秤。
d. 美國知名橋水基金創辦人Ray Dalio在其將於2021年11月初版的書籍」The Changing World Order」 已提前公開的第七章」US-China Relations and Wars」提出綜合國力歷史計算與國力表(見圖)
提出美國正處於信用擴張後期的大國階段,而歷史上處於此階段與新興國力上生階段的國家一旦發生國力曲線交叉時,多半發生大規模戰爭以重新均衡雙方與整體國際關係。
依其推論,中美兩國發生戰爭的風險來到史上最高點。
但這部分我持較保留態度,特別是新任President Biden政府的高達$6 triilion美元的聯邦預算案出台,我們注意到一者,美國聯邦政府支出繼續維持二次世界大戰以來的GDP高佔比--達25%,二者,預算增幅最大均在健康醫療(成長23.1%)、商務(27.7%)與環保(21.3%),然在國防(1.6%)與國家安全(0.2%)幾乎未有成長,甚至計入通貨膨脹因素,後二部門的預算是實質減少的。因此可推估此任政府對發生大型戰爭的預期心理。
四、 變種病毒的不確定性
這是最後最難評估的風險,在現階段的資產配置決策中不可忽略卻又幾乎難以估計。拔高到國家決策層面來看,這也是中國面對的最棘手風險之一。
結論:
以上是我從經濟學角度出發,非常簡略地預測中國在疫情後將面對的國內外經濟環境與挑戰。其中任何一項單獨提出要深入探討都會是長篇大論。還有一些我認為相對重要性較低的現象與局限條件轉變,本文也尚未涵蓋。
BTW,最後多提一句台灣獨有的風險:後疫情時代是否接種過疫苗有可能在相當時間內成為國際旅遊的必要條件。然如果台灣政府真的壓寶在台灣國產疫苗上,則在現今環境下有沒有可能不被世界多數國家組織承認?會是一個額外的成本。
參考文獻:
* The Wall Street Journal, 「Biden is the $6 Trillion Man」 (May 28, 2021), https://www.wsj.com/articles/biden-is-the-6-trillion-man-11622241749
* The Financial Times, 「The summer of inflation: will central banks and investors hold their nerve?」 (May 15, 2021), https://www.ft.com/content/414e8e47-e904-42ac-80ea-5d6c38282cac
* Ronald Coase, 「The Problems of Social Cost」 (1960)
* Ray Dalio, 「The Changing World Order: Why Nations Succeed and Fail」 (2021)
* Irving Fisher, 「The Money Illusion」 (1928)
* Mundell, Robert A. (1963). "Capital mobility and stabilization policy under fixed and flexible exchange rates". Canadian Journal of Economics and Political Science. 29 (4)
* Milton Friedman and Anna Schwartz, 「A Monetary History of the US, 1867-1960」 (1963)
* Milton Friedman, 「Money and the Stock Market」 The Journal of Political Economy, Vol. 96, No. 2 (Apr., 1988), pp. 221-245 「
* Allan Meltzer, 「Learning about Policy from Federal Reserve History」 (Spring 2010)
* Armen A. Alchian, 「Effects of Inflation Upon Stock Prices" (1965)
* 張五常, 「Will China Go Capitalist?」 (1982)
* 張五常, 「The Economic Structure of China」 (2007)
* Ronald Coase and Ning Wang, 「How China Became Capitalist」 (2012)
* Alfred Marshall, 「Principles of Economics (8th ed.)」 (1920)
文章連結:
https://bit.ly/3vD1B2o
影響廠商生產供給的因素 在 麥克風的市場求生手冊 Facebook 的最佳解答
晶圓代工廠不願意大幅擴充,IC設計廠商只好自己買設備確保產能,雖然類似的案例不是沒有,像蘋果過去就會買設備給代工廠,但發生在IC設計產業,還真的挺有意思的。
【半導體設備市場發出「異常」信號】
近幾個月,半導體行業的熱點和主題一直是產能吃緊和漲價,已經非常成熟的IC設計+晶圓代工產業模式,分工明確,效率越來越高,這在客觀上也推升了產能吃緊程度。在這樣的產業背景下,近期出現了一系列十分吸引眼球的「新鮮」事件。
就在昨天,業界傳出消息,IC設計大廠聯發科為了鞏固電源管理IC產能,自掏腰包16.2億元新台幣採購了一批半導體設備,租給晶圓代工廠力積電搶產能。
由於5G需求大爆發,加上遠程辦公/教育需求持續旺盛,聯發科在2020上半年向力積電每月下單3000片12吋晶圓用於生產電源管理IC。進入下半年後,下單量快速拉昇到每月7000片,全年取得12吋電源管理IC用晶圓數量達到6萬片。即使如此,仍不能滿足客户訂單需求。基於此,預計到2021年,聯發科每月將從力積電獲得上萬片電源管理IC的12吋晶圓產能,全年取得電源管理IC晶圓數量將比2020年翻倍增長。
而聯發科的產能狀況只是整個市場的一個縮影,類似這樣的情況大量存在。
傳統上,只有晶圓代工廠、封測廠和IDM才會購買半導體設備用於自家的生產,而IC設計廠是無Fab模式,是不需要半導體設備這類重資產投資的,這也是當初產業由IDM分化為IC設計+晶圓代工模式的主要原因,即分工明確,提升了產業效率。
此次,聯發科採購半導體設備,在租給對應的晶圓代工廠的操作非常罕見。這也從一個側面反應出,當下晶圓代工產能吃緊狀況已經非常普遍,且程度很深,從而形成了巨量的市場空白。而量變必定引發質變,IC設計廠商權衡後,認為做出少有的購買半導體設備這一舉動,投入產出比依然為正,且後續帶來的收入非常可觀,只有如此,才會做出這樣的決定。可見,市場對產能的需求是多麼的大而強烈。
除了聯發科這一吸睛的操作之外,近期還有多種因產能吃緊而出現的不同尋常事件,如三星晶圓代工業務部針對旗下的8吋晶圓廠進行自動化擴建投資,以提高生產效率。
一般情況下,業界12吋晶圓產線為全自動化生產,也就是在無塵室中藉助架設在高處的運輸系統移動晶圓盒。不過,8吋晶圓盒仍由工作人員用搬運車運送。
據韓媒報道,三星已經在部分8吋晶圓廠的產線測試自動化運輸設備。這樣的自動化升級,需要投入大量的資金,據三星估計,如果要在所有8吋晶圓廠中導入自動化運輸設備,可能需要約870萬美元的附加投資。而且,這樣的投資也是有風險的,不能絕對保證取得預想的生產效果。
此外,由於產能越來越緊張,很多小型IC設計公司到處找產能而不得,即使是加價也拿不到,因此還上演過一些很是讓人心酸的悲情場面。
可見,無論是IC設計的代表聯發科,還是晶圓代工的代表企業三星,為了產能,都在不惜血本,甚至不約而同地改變了各自原有的經營模式。與此同時,規模較小的IC設計和晶圓代工廠則沒有那麼強大資金實力,能夠在這一大波機遇中分得的蛋糕就比較有限了,甚至有被「擠壓變形」的風險。
總體來看,這種產能嚴重吃緊的狀況,使得相關的IC設計廠商,晶圓代工廠,以及半導體設備廠這三方成為了最主要受益者。
晶圓代工催漲半導體設備
在IC設計廠商、晶圓代工廠和半導體設備廠這一鏈條上,晶圓代工廠與設備商直接產生聯繫,而晶圓代工廠的火爆,直接帶動着半導體設備市場的增長。據SEMI統計,今年9月,北美半導體設備製造商出貨金額達 27.5億美元,月增3.6%,年增40.3%,創今年新高,並創下連續12個月超過20億美元的佳績,還創下近 20 年來單月歷史新高。
SEMI 認為,2020年,隨着數據中心基礎建設和服務器存儲需求增加,加上疫情以及美中貿易戰加劇,供應鏈為預留安全庫存,帶動芯片需求提升,是帶動今年晶圓廠設備支出大幅增長的重要因素。
近期,台積電也針對資本支出做出展望,預計今年資本支出將貼近170 億美元,這也從一個側面反映出客户下單並未因疫情而減緩,需求相當強勁。
SEMI認為,這一波設備支出走強,佔晶圓製造設備銷售約一半的晶圓代工和邏輯製程支出貢獻最多,2020 年及 2021 年都維持個位數穩定增長;DRAM 和 NAND Flash 在2020 年支出將超過 2019 年,且在 2021 年增長幅度都將超過20%。
另外,晶圓廠設備包括晶圓加工、晶圓廠設施和光罩設備,預計 2020 年將增長 5%,受惠於內存支出復甦,以及先進製程與中國市場的大力投資,2021 年將大幅上升 13%。
按地區來看,台灣、中國與韓國都是 2020 年及 2021 年設備支出金額的領先市場,其中,台灣2020年設備支出在去年大增 68% 後,略微修正,預計 2021 年將回升,反彈幅度達10%。
由於台灣是全球範圍內晶圓代工業最發達的地區,這裏的半導體設備支出會明顯高於其它地區。而採購設備,本來都是晶圓代工廠做的,如今作為IC設計大廠的聯發科也加入這一採購大軍,無疑會進一步提升台灣在全球半導體設備市場的影響力。
IC設計廠商的重資產化
在過去的半個世紀,整個半導體行業一直是從單一的IDM向IC設計+晶圓代工這一分工合作方向發展,但最近幾年,特別是從2015年在全球掀起的半導體併購狂潮開始,整個產業似乎在從分散向整合方向演進。這其中,有相同業務模式公司之間的合併,也有不同業務模式公司的合併。與此同時,原本單一業務模式的廠商,也越來越多地在向複合業務模式方向發展。
典型代表就是台積電,該公司本來只做晶圓代工,但隨着市場地發展,進入本世紀第二個十年以後,台積電開始導入封裝測試業務,因為這樣可以進一步提升市場掌控力和話語權,提升產品上市速度。
另外,就是有越來越多的IC設計廠商涉足晶片生產過程,特別是封裝測試領域,相比於晶圓代工,IC設計廠商進入封測業務的投入相對少,門檻也會低一些。它們這樣做的主要目的同樣是提升市場掌控力和話語權,提升產品上市速度。最具代表性的就是CMOS圖像傳感器(CIS)領域,由於CIS在2019年出現了井噴,嚴重供不應求,促使一些CIS芯片設計廠商開始投入大量資金建廠、購置封測設備,從原來的fabless業務模式,逐步轉型為fab-lite。
此次,在產能嚴重吃緊的產業大環境下,聯發科直接購買半導體設備租給相應的晶圓代工廠,似乎在從另一個角度詮釋着IC設計業的變遷態勢,以後很可能會出現更多類似的現象。
最近幾個月,聯發科曝光率一直很高,這與華為有着很大的關係。由於受到貿易限制,華為原有的美國晶片元器件供應鏈受阻,特別是手機處理器、電源管理和無線連接晶片,而這些正是聯發科的強項,因此,華為向其發出了大量訂單,這在很大程度上導致了其產品的供不應求。
另外,還有消息稱,聯發科有希望拿下蘋果訂單,最有機會打進的是iPad或是iPhone 產品線,如果屬實的話,這將會進一步提升其2021年業績。或許,這也是該公司不惜花大錢購買設備租給晶圓代工廠,為其保證產能的一個重要原因吧。總之,如果能同時擁有華為和蘋果這兩大客户的話,前期多進行投資,是非常值得的。
嚐鮮
為了尋求產能支持,有些電源管理IC和MOSFET廠商正在考慮從8吋晶圓升級到12吋晶圓生產,不過,這種想法的可操作性不強,主要原因在於,用12吋晶圓生產MOSFET在技術層面沒有問題,但就目前的產業情況來看,成本難以接受。而起初的參與者,都屬於「嚐鮮」、吃螃蟹的。
此次,聯發科購買的半導體設備將租給力積電,主要是為了保證其電源管理IC產能。這裏就涉及到了「嚐鮮」的話題。具體來講,就是由於電源管理IC大多采用8吋晶圓製造,鮮少廠商使用12吋晶圓生產,因為12吋晶圓大多提供給邏輯製程使用,而力積電本來就具備DRAM技術,因此擁有12吋鋁製程產能,較適合量產電源管理IC技術,而台積電、聯電在12吋生產大多以銅製程,相比之下不適合量產電源管理IC,因此,聯發科才會罕見採購設備回租給力積電,以鞏固其未來電源管理IC產能。
聯發科似乎有「嚐鮮」、開創新業務和模式的傳統。早在20年前,當時的聯發科在業內還是岌岌無名的晚輩,當時,該公司憑藉「一站式」的手機方案,即為手機客户提供主晶片和參考設計,從而解決了手機80%的設計工作,客户只需要完成後續的20%工作就可以了。一舉統治了山寨機市場,並由此打下了立足產業的基礎,才有機會發展壯大到今天。
目前,ASIC設計服務正在興起,聯發科的ASIC設計服務在業內也是一絕,也是較早投入發展該業務的半導體廠商。目前,在提供ASIC設計服務的企業裏,聯發科是數一數二的。不久前,有消息稱,當下在處理器市場熱得發燙的AMD將ASIC設計服務訂單交給了聯發科,也從側面展現出了其ASIC設計實力。
如今,聯發科又開始涉足半導體設備業務。可以説,該公司一直走在不斷嚐鮮的路上。
影響廠商生產供給的因素 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
汽車軟體深度報告:汽車軟體產業鏈及未來趨勢分析
北京新浪網 10-01 20:00
來源:未來智庫
關鍵結論
電動智能趨勢下,汽車逐步由機械驅動向軟體驅動過渡。近年 SDV(軟體定義汽車)概念逐步被行業認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電 動化帶來的汽車電子構架革新,汽車硬體體系將逐漸趨於一致,軟體成為定義 汽車的關鍵,行業更具想像空間。即造車壁壘已經由從前的上萬個零部件拼合 能力演變成將上億行代碼組合運行的能力。本文通過對汽車軟體行業的系統性 梳理,幫助讀者把握行業成長中的投資機會。
我們提出零部件賽道三維篩選框架,基於起點(單車價值量)-持續時間(產品生 命周期)-斜率(產品升級速度)三維體系評價細分零部件的市場空間,軟體平均單車價值量由傳統車的 200 美元,提升至 2025 年新能源汽車的 0.23 萬美元,進 一步至 2025 年新能源汽車的 1.8 萬美元。未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間,57%的增量來自於 ADAS 及 AD 軟體。
軟體如何定義汽車價值?百年汽車工業面臨由機械機器向電子產品過渡的新變 局。汽車「駕駛感」及車機 APP 化的功能實現發生在我們看不到的隱秘角落— —上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。
汽車軟體成為未來汽車構架重要組成部分。而整車電子電氣構架提供的硬體、 操作系統實現的管理功能、基礎軟體平台構架實現的抽象化為 SDV 不可或缺的 三大關鍵部分,軟硬體的分離(研發分離、功能發佈分離)成為實現 SDV 基礎。
發展史與整車廠戰略。汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發 動機控制演算法→1980 年代中央計算單元創新→1990 年代信息娛樂系統創新→ 2000 年代安全系統→2010 年代開始向全新汽車電子構架及軟體系統演變。不 同於以前依靠多個 ECU 由部件供應商主導的無獨立軟體產品概念時代,主機廠 愈發需具備軟體的管理能力及核心軟體設計能力。整車廠中特斯拉引領車載軟 件行業最高技術,大眾重金重塑軟體架構,整車廠關乎開發周期、賦予附加值、 構架實現、軟體變現模式以及操作系統切入等問題上仍未進行標準化定義,卻 為影響行業發展的關鍵所在。
產業鏈機遇。新科技、軟體公司湧入帶動供應鏈管理的扁平化、邊界模糊化, 帶動供應鏈生態體系變革。供應模式上,預計 Tier1 與整車廠之間將採取兩種合作方式,其一,整車廠主導軟體,Tier1 負責硬體生產;其二,整車廠定義軟 件框架規範標準,Tier1 供應符合標準的相關軟體。盈利模式上,偏向製造業邏 輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業穩態階段,往 介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由於迭代周期快 且行業特性帶來的標準化程度低,賦予汽車新盈利模式。現階段特斯拉三大付 費模式打開車企軟體變現想像空間,開發基礎平台收許可費、供應功能模塊按 Royalty 收費及定製化的二次開發均為未來軟體供應商主流打法。
推演的 5 大未來趨勢。汽車終將成為搭載「差異化元素」的通用化平台。一方 面,ECU 功能模塊里循環迭代的代碼驅動汽車執行動作反饋;另一方面,車載 娛樂信息系統 APP 化吸引第三方開發者入場。海量數據將在車內流轉,關於賦 能域控制器、定位車機系統的各項軟體性能升級,包括功能中心化、乙太網應 用、整車 OTA 升級、信息交互上雲及深層次的信息安全防禦等,或將帶來汽車 軟體一系列發展機遇。
SDV 新階段:軟體如何定義汽車價值
百年汽車工業面臨由機械機器向電子產品過渡的新變局。跨入駕駛室,安靜的 啟動、柔中帶剛的加速、平穩過渡的剎車等為代表的汽車「駕駛感」逐步由機 械驅動向軟體驅動過渡,這一套功能的實現發生在我們看不到的隱秘角落—— 上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。近年來,SDV(Software Define Vehicles,即軟體定義汽車)概念逐步被整車 廠認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電動化帶來的汽 車電子構架革新,汽車硬體體系將逐漸趨於一致,整車廠很難在硬體上打造差 異化,此時軟體成為定義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件 拼合能力演變成將上億行代碼組合運行的能力。
汽車軟體為未來汽車構架重要組成部分
汽車軟體與硬體體系發生分化。近幾十年隨汽車構架升級、性能與用戶操作感 需求逐年提升,汽車軟硬體數量爆發,並愈發複雜化。在硬體方面,電控單元 數量迅速增長,於 2010 年面臨增速放緩的拐點(主要受整車成本與控制器數 量平衡的影響),2025 年隨行業集中式電子電氣架構趨勢持續推進,電控單元 邁向集成化從而控制器數量將較為平穩。在軟體方面,各大主機廠軟體功能體 系越做越大,其中「功能函數」作為軟體體系中的最小單元,其單車數量持續 增大,控制器內部的功能函數複雜度提升,疊加智能座艙新增的應用型軟體需 求,軟體重要性愈發凸顯。2010 年(增速放緩的硬體數量 VS. 急劇攀升的軟 件數量)與 2025 年(硬體產業成型 VS.軟體加速迭代塑造汽車差異性)為汽車 軟硬體發展中兩個重要的分水嶺。
汽車複雜的運作需軟硬體結合進行。無論是駕駛艙對汽車電子功能的調用,抑 或汽車與駕駛員和環境互動,均可抽化為軟硬體密切配合的模型,即駕駛員的 需求與汽車功能反應之間存在著複雜的控制鏈條:駕駛員通過機械硬體或部分 虛擬按鈕輸入期望(例如通過車載按鈕、踏板等輸入型機械硬體給出期望)→ 駕駛員動作轉換為電子信號傳入電控單元→執行器控制控制對象達到駕駛員的 需求→感測器向電控系統持續反饋控制達成的具體情況,軟體邏輯持續運算向 執行器發出指令,最終達成駕駛員的期望要求。以剎車輔助駕駛為例,在駕駛 員剎車信號不足或過慢的情況下,內置的一套軟體邏輯將被激活,讓制動系統 自動做出減速相應。在電控單元中快速進行的一次次軟體迭代循環,為汽車正 常運作的基石。
SDV 研發工具鏈仍以 V 流程為主。汽車研發系統過程能拆解為軟體、硬體、執 行器及感測器 4 大部分。與傳統車相同,V 模型為車企主流的開發流程,從產 品設計、子系統設計、控制器驗證及系統驗證等階段均有相對應的工具鏈進行 支撐,涵蓋從系統到軟體以及集成后的一系列測試等內容。SDV 模式下對工具 鏈的應用具部分變化:一方面,硬體愈發通用化,研發會集中在作為功能集群 的 ECU 開發上;另一方面,車的各種功能實現盡量靠軟體實現。
Step 1:產品設計階段。此階段核心為分析和拆解需求。由消費者的需求、車 型安全及性能的剛性需求以及法律法規需求定義出軟體的基礎構架,以及定義 出各大功能模塊。
Step 2:子系統設計階段。步驟為由系統構架需求定義軟硬體構架設計。關乎 軟體系統部分在這一步雛形初顯,能將技術問題具體化,例如定義軟體能實現 的功能、軟體功能模塊的分離、如何跟對應的控制器配合等。
Step 3:控制器驗證階段。完成硬軟體及控制器集成,代碼成型并迭代測試。
Step 4:系統驗證階段。測試軟硬體在整車上的裝載使用情況。
SDV不可或缺的三大關鍵部分——電子電氣架構、操作系統、軟體平台
整車電子電氣構架為硬體基礎。汽車電子電氣架構(Electronic and Electrical Architecture,文中簡稱 EEA)最初由德爾福公司提出,以博世經典的五域分類 拆分整車為動力域(安全)、底盤域(車輛運動)、座艙域/智能信息域(娛樂信 息)、自動駕駛域(輔助駕駛)和車身域(車身電子)等 5 個子系統。後續演變 成車企所定義的一套整合方式,可形象看作人體結構中的骨架部分,後續需要 「器官」、「血液」和「神經」進行填充。具體到汽車上來說,EEA 把汽車中的 各類感測器、ECU(電子控制單元)、線束拓撲和電子電氣分配系統完美地整合 在一起,完成運算、動力和能量的分配,實現整車的各項智能化功能。博世曾 經將汽車電子電氣架構劃分為三個大階段:傳統分散式電子電氣架構-域控制器 電子電氣架構-集中式電子電氣架構:
(1)傳統分散式的電子電氣架構:主要用在 L0-L2 級別車型,此時車輛主要由 硬體定義,採用分散式的控制單元,專用感測器、專用 ECU 及演算法,資源協同 性不高,有一定程度的浪費。產業鏈分工上,車型架構由整車廠定義,實現核 心功能的 ECU 及其軟體開發由 Tier 1 完成。
(2)域控制器電子電氣架構:從 L3 級別開始,通過域控制器的整合,分散的 車輛硬體之間可以實現信息互聯互通和資源共享,軟體可升級,硬體和感測器 可以更換和進行功能擴展。屬於過渡形態,ECU 仍承擔大部分功能實現,整車 廠將參與部分域控制器的開發。
(3)集中式電子電氣架構:以特斯拉 Model 3 領銜開發的集中式電子電氣架構 基本達到了車輛終極理想——也就是車載電腦級別的中央控制架構。此時集成 化趨勢將消減大部分 ECU,主機廠將逐漸主導原本屬於 Tier 1 參與的軟體部分 (預計以直接開發模式或定義規範標準后讓供應商參與),其目標是設計簡單的 軟體插件和實現物理層變化的本地化。
操作系統實現管理功能。車載操作系統(Car-OS)承擔著管理車載電腦硬體與 軟體資源的程序的角色。20 世紀 90 年代伊始,汽車上基於微控制晶元的嵌入 式電子產品的應運興起,需加入相關的軟體架構以實現分層化,即汽車電子產 品均需要搭載嵌入式操作系統。從產品品類上,汽車電子產品可歸納為兩類, 一是以儀錶,娛樂音響、導航系統為代表的車載娛樂信息系統;二是主管車輛 運動和安全防護的電控裝置。兩者對比而言,電控系統更強調安全性和穩定性, 因此應用於電控單元 ECU 的嵌入式操作系統標準更為嚴格。未來操作系統發展 面臨兩大趨勢,一是以 OSEK、AUTOSAR 為典型代表的操作系統標準聯盟將 定義統一的技術規範;二是智能網聯趨勢下數據融合度提升,由於各個部件的 安全標準等級不一從而整車上存在多種操作系統的運用,通常引入虛擬機管理 (可提供同時運行多個獨立操作系統的環境),如在智能座艙 ECU 中同時運行 Android(車載電子操作系統)和 QNX(電控操作系統)。
基礎軟體平台構架是實現抽象化的關鍵所在。從定義上,軟體架構為軟體系統 定義了一個高級抽象(軟體表達行為、屬性、相互作用、集成方式及約束均在 此架構上體現)。而 SDV 核心內涵是能夠通過軟體作用,動態地改變構架網路 節點之間的聯結或分離狀態,從而定義汽車不同的功能組成。基礎軟體平台需 具備三方面要求:一是可靠性,能保證汽車功能實現的實時和安全;二是通用 性,適用於不同車型和不同的操作系統上;三是網構架節點易於更換聯結方式。AUTOSAR 是全球各大整車廠、供應商聯合擬定開放式標準化的軟體架構,其 使得不同結構的電子控制單元的介面特徵標準化,從而軟體具更優的可擴展性 及可移植性,降低重複性工作,縮短開發周期。
汽車軟硬體分離為 SDV 基礎
軟硬體的分離涵蓋研發分離、功能發佈分離兩方面。軟硬體分離為實現 SDV 基 礎,電動化趨勢簡化造車流程,未來汽車硬體的研發、製造更偏向於流水線過 程,而軟體發展逐步具互聯網的快速迭代趨勢傾向。汽車軟硬體分離概念由此 而生,其包含兩方面內容,一方面,由於開發周期(汽車硬體 5-7 年的開發周 期 vs. 軟體 2-3 年的開發周期)及技術領域(偏向製造業 vs.偏向互聯網)的 差別,汽車軟硬體在開發上、供應上逐漸分開。另一方面,軟體的功能發佈可 以與車型完成分離,新軟體不僅適用於新車,仍可快速發佈到已量產車型上, 增強車型硬體的使用長尾期。
軟硬體分離在功能升級及工藝裝配上具優勢。基於軟硬體分離的新構架體系在 車型功能升級及製造模式上發生變化。功能升級上,新的擴充功能由軟體定義 通過雲端直接升級,無需再在硬體層面進行驗證;工藝製造上,與軟體分離后 的電子電氣構架不同於現階段「八爪魚」式的複雜構造,更易於自動化裝配。
當前車企實現更新的方式——硬體冗餘,後續依靠更新升級。
(1)硬體預置:傳統汽車定價由硬體及性能決定。而 SDV 模式下,相同硬體 的車型通過不同的軟體配置決定車與車之間不同的功能與體驗。車企在車型設 計之初需提前定義軟硬體,SOP 時將具備擴展功能的冗餘硬體預裝,後續將通 過付費型軟體升級或者功能開放回收成本。以特斯拉的 AutoPilot 為例,冗餘的 預設硬體將通過後期持續的軟體升級調動功能,為新創收模式。
(2)性能預置:性能預置分為兩個方面,控制器算力預留,為更多的軟體功能 和演算法預留空間。隨智能駕駛趨勢,車載算力大幅提升,由於無法預估後續所 需算力的極限,通常在實際情況中會預留算力空間。性能預留,通常在各性能 硬體上做事先預留,以應付如加速性能提升,續航里程提升,圖像的清晰度提 升,音響效果提升等升級事項。例如 2018 年 6 月,美國權威雜誌《消費者報 告》發現, Model3 剎車距離比皮卡福特 F-150 要長。ElonMusk 接受了《消 費者報告》的批評並承諾通過 OTA 儘快解決此問題。此後在不到一周時間, 特斯拉通過一次 OTA 升級解決了該個問題,《消費者報告》重新測試后發現, 升級后的 Model3 剎車距離縮短了 5.8 米。
追溯發展史:汽車軟體的前世
汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發動機控制演算法(軟體嵌 入應用模式)→1980 年代中央計算單元創新(顯示車輛基本信息)→1990 年 代信息娛樂系統創新(GPS、自適應巡航控制出現)→2000 年代安全系統(出 現高級駕駛員輔助駕駛概念)→2010 年代開始向全新汽車電子構架及軟體系統 演變(電子化和軟體化,出現無人駕駛概念)。
1980 年代之前,汽車僅搭載車燈、啟動機、火花塞等簡易電子設備,並未運用 任何軟體部分。整車電子設備通信及電能供給依靠銅導線傳輸。部分豪華車裝 置僅由收音機為核心部件的車載娛樂系統。
1970 年代,發動機系統具備演算法功能。出現點火系統、電子燃油噴射等裝置, 軟體直接嵌入應用使用,軟體之間無關聯具獨立性。
1980 年代隨 IT 技術起步,電子電氣化革命在傳統機械部件上進行創新。油耗 及行駛距離等信息可在車內做電子化顯示,搭載軟體的電控單元開始出現,如 防抱死系統 ABS、車輛穩定系統 ESP、電子變速箱等電子系統誕生,新功能由 嵌入式軟體的演算法控制,CAN 及 LIN 匯流排解決不同控制器之間的通信問題。
1990 年代,信息娛樂系統持續創新,軟體成為汽車重要部分。汽車軟體構架愈 發分散,出現 GPS 及自適應巡航控制等較高階的電子組件及軟體。同時,不同 控制器間持續延長的通信匯流排成為車企後續進行成本管控的重要一環。
2000 年代,安全系統推出,軟體開始主導汽車創新。「高級輔助駕駛概念」在 此階段興起,例如駕駛員未及時反應的障礙物可以系統運算下汽車自發停車規 避。此時的軟體系統更為高階,行業引入 AUTOSAR 標準軟體構架。車型方面, 電子化特徵明顯,賓士 S 級轎車車型電控單元超 80 個,通信匯流排近 2000 條。
2010 年開始,汽車電動化帶來電子電氣構架、汽車軟體新變局。智能駕駛、車 聯網概念引入,造車新勢力、互聯網企業等多玩家參與進造車環節,以特斯拉 為代表的整車廠重新定義軟體系統,新創 OTA 新升級模式。
產業鏈機遇:SDV重塑市場格局
新科技、軟體公司的湧入帶動了供應鏈管理的扁平化、邊界模糊化,推動產業 競爭要素髮生本質變化,帶動供應鏈生態體系變革。在傳統封閉式供應鏈的汽 車製造商在整條供應鏈中只負責一個環節,主要擔任汽車研發製造的角色。而 在新生態體系中,汽車軟硬體分離重塑產業格局,主機廠、供應商以及互聯網 企業均參與進汽車新生態體系,從汽車全生命周期覆蓋整個產業鏈條。
供應模式轉變,主機廠、供應商及互聯網企業入局
SDV 軟體開發模式下,不同於以前依靠多個 ECU 由部件供應商主導的無獨立 軟體產品概念時代,主機廠愈發需具備軟體的管理能力及核心軟體設計能力, 並引入供應商及互聯網企業參與此環節。在軟體領域,預計未來 Tier1 與整車 廠之間將採取兩種合作方式:
其一,整車廠主導整車軟體部分,Tier1 負責硬體生產。在傳統車企巨頭入場燃 油車領域 100 多年的歷史里,造車流水線仍以機械製造為主,Tier1 以分擔主機 廠重資產角色存在,通常與整車廠車型生產周期形成相應配套。而在智能化時 代,軟體主要以輕資產模式運轉,出於掌握核心技術考量通常為主機廠所主導。其二,整車廠定義軟體框架規範標準,Tier1 供應符合此標準的相關軟體。瞬息 萬變的技術導致車企研發容錯率下降。尤其對新入場的造車勢力而言,若在前 1~2 款車連續失敗,大概率將面臨淘汰。因此對部分在技術儲備、研發及資金 實力較弱的主機廠而言,可在其定義軟體標準後由 Tier1 進行對應的開發配套。
盈利模式轉換,將逐漸由硬體逐漸向軟體傾斜
硬體發展具天花板效應,軟體持續賦予車型新附加值。以經過 15 年發展的手機 產業鏈為例,硬體體系隨處理器性能持續提升、攝像頭像素及攝像頭個數持續 增加、屏幕材質與大小升級,其產業增速趨緩,硬體盈利模式逐漸固化。而隨 蘋果 iPhone 產品橫空出世定義軟體附加值新模式,小米做低手機硬體利潤並將 其定位於功能載體,至此軟體與服務成為手機產業鏈盈利模式的重要來源。對 標至汽車,偏向造業模式的傳統車具較固定的盈利模式,從而車企具較穩定的 利潤率,而目前在汽車電子電氣化架構趨勢下,軟體有多樣性應用的空間,無 論硬體抑或軟體體系均包含升級或新生環節,盈利模式尚未定型。而長遠來看, 偏向製造業邏輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業 穩態階段,往介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由 於迭代周期快且行業特性帶來的標準化程度低,賦予汽車新盈利模式。
特斯拉已構築初階車企軟體盈利模式。矽谷出身的特斯拉已證實一條軟體大規 模變現的可行性路徑,分為 FSD 付費、軟體應用商城及訂閱服務三種模式:
(1)FSD 付費模式:特斯拉車型在售出后標配 Autopilot 輔助駕駛功能,而實 現自動泊車、智能召喚的 FSD 全自動駕駛功能需付費使用。FSD 單價並未固 定,過去一年內特斯拉 FSD 售價經過三次提價(國外 8000 美元,國內 6.4 萬 元),成為特斯拉利潤的重要來源。以 2019 年 36.7 萬輛的交付量計算(30 萬 輛 Model3,6.7 萬輛 ModelS/X),假定 35%的 FSD 裝載率,6500 美元的 ASP, 則軟體收入近 8.3 億美元(其毛利率大概率高於 80%)。
(2)軟體應用商城:類似手機應用商城,可即時購買性能升級軟體包(包括輔 助駕駛功能、FSD 及各類性能升級包),通過 OTA 進行升級。
(3)訂閱服務:2019Q4 推出定價 9.9 美元/月的車聯網高級連接服務,包括流 媒體、卡拉 OK、影院模式等功能。2020Q2,特斯拉宣布計劃在年底推出定價 100 美元/月的 FSD 套件訂閱服務,為 FSD 的使用提供另一選擇。
對於第三方汽車軟體供應商,盈利模式仍不明晰,參考手機產業模式及目前行 業發展情況,預計其未來有望採用以下 3 種主流盈利模式:
(1)受主機廠委託,開發基礎平台並收取許可費用。
(2)供應功能模塊按汽車出貨量 Royalty收費(按銷售量和單價一定比例分成)。
(3)基於車企平台為其做定製化的二次開發,並收取費用。
市場空間:未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間
軟體市場進入快速擴張期。包括系統軟體和應用軟體在內的軟體系統將在智能 化趨勢中,由低基數實現快速擴張,據麥肯錫預計,軟體在 D 級車整車價值中 所佔的比例有望在 2030 年達到 30%,將成為未來汽車行業最重要的領域。
市場規模方面:電動智能化趨勢下硬體發展周期領先於軟體,增量市場彈性小 於軟體。據麥肯錫,2020-2030 年汽車軟體和 E / E 架構市場預計復合年增長 7%, 從目前的 2380 億美元增長至 2030 年的 4690 億美元。拆分來看,2020-2030 年軟體市場規模(操作系統、中間件及功能軟體)復合增速為 9%(由 2020 年 的 200 億美元,增長至 2025 年的 370 億美元,進一步增長至 2030 年的 500 億美元)。2020-2030 年動力系統市場規模復合增速為 15%,主要受動力源更 迭拉動。在硬體方面,ECU/DCU、感測器以及其他電子元件的復合增速分別為 5%、8%及 3%。軟體的應用帶動汽車集成及驗證環節革新,2020-2030 年集成 及驗證市場規模復合增速為 10%。
單車價值量方面:汽車軟硬體實現分離后兩者的發展模式將出現分化。其中硬 件體系的價值量隨模塊化、集成化發展,在規模化降本過程中其單車價值量增 長將較為平緩或略下降態勢;而軟體體系迭代速度快,在其對附加值模式的持 續探索下,價值量將持續上行。據麥肯錫預計,汽車中軟體單車價值量增速最 大,純電動車型將由 2025 年的 0.23 萬美元增長 7倍至 2030 年的 1.82 萬美元。同期 ECU/DCU、感測器、動力系統(除電池)及其他電子器件增速分別為 37%、 27%、-7%、5%。此外,在豪華車及主打智能化車型上,軟體的價值量佔比及絕對值將處較高水平。
汽車結構方面:全球汽車軟體與硬體內容結構正發生著重大變化,軟體驅動逐 漸成為主導。據麥肯錫預測,2016年軟體驅動佔比從 2010年的 7%增長到 10%, 預計 2030 年軟體驅動的佔比將達到 30%,屆時硬體驅動佔比僅為 41%。
軟體內容方面:應用型軟體為汽車軟體發展主力,ADAS 及 AD 軟體為主要增 量。據麥肯錫預測,2020-2030 年一體化軟體、驗證型軟體及功能性軟體市場 規模復合增速分別為 9%、10%、10%,其中功能性型軟體佔據汽車軟體半壁江 山(結構上佔比 6 成)。2020-2030 年按軟體功能劃分的市場規模中,最大增量 為 ADAS 及 AD 軟體,佔市場規模增量的 57%;信息娛樂、安全及聯網相關軟 件次之,占 20%;操作系統和中間件、車身和動力系統相關軟體、動力總成和 底盤相關軟體分別佔據 10%、10%、2%。
整車廠戰略思路:軟體為必爭之地
在汽車構架三步走過程中——傳統分散式電子電氣架構-域控制器電子電氣架 構-集中式電子電氣架構,主機廠將逐漸主導原本由 Tier 1 包攬的定製軟體部分, 軟硬體進行拆分發包的趨勢近年來愈發明顯。車企和互聯網軟體企業紛紛入局, 特斯拉引領車載軟體行業最高技術,大眾計劃緊跟,組建 5 千名軟體工程師開 發旗下所有車型統一的操作系統「vw.OS」,汽車屬性已然將逐漸由代步工具轉換 為移動的第三空間(例如未來的娛樂、辦公場所)。現階段整車廠與 Tier 1 的合 作模式仍在探索中,關乎開發周期、賦予附加值、構架實現、軟體變現模式以 及操作系統切入等問題上仍未進行標準化定義,卻為影響行業發展的關鍵所在。
特斯拉在軟體層面最大亮點是OTA 升級模式
特斯拉創整車 OTA 升級先河。其升級主要在兩個方面:一方面,將軟體升級發 送到車輛內的車載通訊單元,更新車載信息娛樂系統內的地圖和應用程序以及 其他車機類軟體。例如升級車機的運算速度、屏幕操作流暢度,運行高畫質游 戲以及增強可視化效果等,屬於駕駛艙內「看得見」的升級。另一方面,以直 接將軟體增補程序傳送至有關的電子控制單元(ECU),為 Autopilot 持續引入 及優化新功能。例如提升時速、修復駕駛漏洞等。軟硬體分離開發、硬體性能 冗餘的設計思路是實現 OTA 的必要條件,隨法規放開、演算法逐漸完善,特斯拉 以 OTA 升級軟體模式逐步解鎖新運用功能。此外,特斯拉顛覆車載軟體盈利模 式,以 6.4 萬元的 FSD 選裝軟體包定價、2000 美元的「 Acceleration Boost」 動力性能加速升級包獨創軟體付費的商業模式。
集中式電子電氣架構提供 OTA 基礎。特斯拉的整車 OTA 升級需要其超前的汽 車電子電氣架構做配套配合,傳統車企分散式電子電氣架構中 ECU 數量龐大, 單個 ECU RAM 內存容量有限,同時供應商的底層代碼和嵌入軟體差別較大, 難以完成整車功能的統一更新。而特斯拉採用集中式的電子電氣架構,分為 CCM(中央計算模塊,整合ADAS 及 IVI 域功能)、BCM LH(左車身控制模塊)、 BCM RH(右車身控制模塊)三個部分,2015 款的 Model S 大約有 15 個 ECU, 此後發佈的 Model 3 則直接通過 Hardware3.0 和三個車身控制器執行來控制行 駛、轉向和停止等功能,集中的架構和高算力的控制模塊支撐了特斯拉整車 OTA 升級。目前特斯拉已經可以通過 OTA 的方式實現改善車輛的底盤、信息娛樂、 電池續航、ADAS 乃至自動駕駛等多項功能,讓車的功能迭代更加靈活和便捷, 最終變成一台可以不斷進化的智能終端。
OTA 升級過程需數據網路配合,其安全性尤為重要。特斯拉 OTA 升級即指將程序從主機廠伺服器更新到指定 ECU,主要步驟為:車輛與伺服器通過蜂窩網 絡進行安全連接,將待更新的固件傳輸至車輛遠程信息處理系統及 OTA Manager,OTA Manager 將固件分發至需更新的 ECU 並管理更新過程,更新 完畢後向伺服器發送確認信息。整個 OTA 升級過程面臨安全考驗,騰訊科恩實 驗室曾實現對特斯拉的無物理接觸遠程攻擊,並將漏洞情況報告給特斯拉以做 修復。OTA 模式的信息安全(信息包加密及隔離)及功能安全(車輛狀態信息 傳輸)需得到足夠保障。
特斯拉 OTA 依然屬於行業標杆,傳統車企追趕特斯拉在研發 OTA 過程中仍面 臨困境。具先發優勢的特斯拉在 OTA 對動力和底盤系統有效升級層面、用戶體 驗、系統成熟和穩定性方面均處於行業領先地位,引領傳統車企和造車新勢力 跟隨布局,但仍面臨較多困難,體現在三個方面:其一,需投入較大的人力、 物力、財力,考驗主機廠研發實力;其二,OTA 打破固有的經銷商提供增值服 務的模式,利潤蛋糕重新切分具一定阻力;其三,OTA 安全性和穩定性上要求 較高,主機廠需理解部分互聯網領域技術。
大眾重塑軟體架構,推行 vw.OS 規劃
曾囿於軟體問題車型延遲交付。在特斯拉軟體技術快速迭代壓力下,大眾加緊 開發基礎架構,或因為開發過於倉促等因素,曾多次發生軟體問題,如新一代 純電動汽車 ID.3 因為軟體開發延遲造成交付時間推遲,新款高爾夫也曾因為倉 促上馬新技術(全數字座艙)於車輛中發現軟體問題而臨時停售。
大眾已著手構建軟體架構體系。為抗衡特斯拉及科技巨頭等新勢力的布局,大 眾愈發重視汽車軟體開發業務。2020 年 1 月 1 日起,大眾集團所有軟體開發工 作被集中至獨立新部門——Car.Software(2019 年 6 月份成立)。Car.Software 分為「互聯汽車和設備平台」「智能車身和駕駛艙」「自動駕駛」「車輛運動和能源」以 及「數字業務和出行服務」五個業務單元,其所有功能都將用於開發 vw.OS 車機 系統。一系列車型軟體問題出現后,寶馬製造工程高級副總裁 Dirk Hilgenberg 加入成為 Car.Software 負責人。此外大眾也對智能駕駛研發體系進行重組,如 拆分 L4 智能駕駛研發部分、合併各部門自動輔助駕駛研發。
大眾軟體計劃的內在驅動力來源於兩個方面:
其一:汽車軟體代碼愈發複雜。大眾曾做過統計,汽車軟體的行代碼遠大於其 他應用終端(汽車軟體 1 億行代碼 VS. Facebook 8 千萬行代碼 VS. PC 電腦 4 千行代碼 VS. 飛機 2.5 千萬行代碼 VS. 谷歌瀏覽器 1 千萬行代碼),是智能 手機的 10 倍。2020 年整車代碼量有望超 2 億行,達 L5 級智能駕駛代碼量有 望超 10 億行。
其二:汽車成為複雜的聯網設備,軟體將扮演重要角色。在大眾傳統車型上僅 需約 70 個 ECU,功能相對較為分散。而在未來的集成化計算單元體系下,軟 件的重要性將愈發凸顯,與 ECU 配合定義汽車功能,涵蓋操作系統、基礎軟體 以及其他應用軟體的車載軟體大眾均會自主開發。
大眾對研發投入、人員安排及軟體化目標做出規劃:
投入方面,大眾集團將在未來三到五年內投入 90 億美元(約合人民幣 630 億 元)資金進行軟體開發。員工方面,不同於製造環節的裁員情況,數字化部門 員工由 5000 名再次擴編至 1 萬人。軟體化目標方面,內部研發軟體佔比由不 足 10%提升到 60%以上,同時提出「8 合 1 目標」(將現有的 8 個電子平台整 合為一個平台)。2025 年前,所有新車型將使用 vw.OS 操作系統和定製的雲服 務(大眾與微軟合作),軟體在汽車創新中佔據 90%份額。
汽車軟體的未來推演
若考慮對汽車開發的終極假想,汽車最終會成為搭載「差異化元素」的通用化 平台。以目前視角,差異化元素涵蓋智能座艙(人與車互動的生態系統,包括 包括全液晶儀錶、車聯網、車載信息娛樂系統 IVI、ADAS、HUD、AR、AI、全 息、氛圍燈、智能座椅等方面)及智能駕駛(L1~L5 級智能駕駛等級)領域。而差異化元素主要由車型全新的電子電氣架構和軟體兩方面定義,一方面,ECU 里的功能模塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面, 車載娛樂系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉, 其深層次的安全防禦(檢測和防禦網路攻擊)愈發重要。經過產業趨勢推演, 提出以下 5 大汽車軟體趨勢預判。
趨勢 1.往車輛集中式電子電氣架構發展,功能中心化
集中式電子電氣架構為終極構架體系。以域控制器為代表產品的跨域集中式電 子電氣架構再往後走,就是集成化程度更高的車輛集中式電子電氣架構—— Vehicle computer and zone concept(車載電腦),終極階段為 Vehicle cloud computing(車雲計算)。未來車輛通過用高性能的中央計算單元取代現在常用 的分散式計算的架構,將實現「軟體定義車輛」的終極目標。再此過程 ECU 的整合過程持續提升,應用程序完全從硬體中抽象出來,控制單元概念最終被 智能節點計算網路接棒。
趨勢2.更高傳輸性能的乙太網作為主幹網路承擔信息交換任務
乙太網作為車內通信網路大勢所趨。隨車內數據傳輸總量及對傳輸速度要求持 續提升,以及在跨行業的標準協議需求驅動下,支撐更多應用場景、更高速的 乙太網有望取代 CAN(主要用於車載控制數據傳輸,最大帶寬 1MB/s)、LIN(低 成本通用串列匯流排,主要用於車門、天窗及座椅控制)、Most(主要用於發數據 包)等傳統汽車車內通信網路成為車內通信網路。在對同樣的 ECU 的軟體進行 更新時,CAN 模式下的傳輸時間是乙太網的 30 倍。因此,乙太網的運用趨勢 得到主流整車廠(如寶馬、通用等)及半導體公司(如博通、恩智浦等)認可, 均推出符合乙太網的應用元件。未來趨勢上,乙太網並非能一蹴而就完全替代 CAN、LIN,預計多種通信模式將在較長一段時間內共存——CAN、LIN 用於傳 感器和執行器等封閉低級網路間的數據傳輸;乙太網(取代 MOST 等技術)用 於域控制器及子部件間的信息交換。
趨勢3.OTA 空中升級模式普及
OTA 由特斯拉引領,向全行業普及。由特斯拉最先推行的 OTA 升級功能模塊 能持續修復汽車軟體缺陷、解決部分故障、解鎖或引入新功能以滿足用戶需求, 成為汽車軟體發展的主流趨勢。按照升級對象的不同,OTA 可分為 FOTA(硬 件在線升級)、SOTA(軟體在線升級)兩個大類,其中 FOTA 主要針對基礎硬 件和汽車底層安全相關功能的升級需求,例如剎車系統、制動系統及 BMS 等;SOTA 主要對座艙娛樂系統進行升級。對 ECU 而言,其內部為備份軟體準備了 額外區域空間,以備當前運行程序出現故障或升級中發生斷錯誤時自動滾回備 份軟體系統,防止車輛出現安全事故。
趨勢4.汽車在雲端交換信息
更為靈活的雲服務是 SDV 載體。從早期的機械時代過渡到目前的硬體時代,在 進一步進化至未來的軟體時代,汽車的功能實現方式持續演變,隨著客戶的個 性化定製需求日益增加,加之雲計算對智能、靈活和自動化的天然要求,由「軟 件定義」來操控硬體資源成為更合適的解決方案,未來大部分汽車功能在雲端 運行,為車企轉型提供聯接使能、數據使能、生態使能和演進使能。因此,在 雲計算的計算、存儲和網路等各方面的基礎設施上,均呈現出從軟硬體捆綁, 到硬體+閉源軟體,再到白盒硬體+開源軟體的演進趨勢。而雲服務也成為 AI、 智能汽車、大數據等新興科技實現商業化落地的載體(例如特斯拉在雲服務載 體上進行 OTA 升級)。近年來雲服務市場實現爆髮式增長,而車載環節尚處於 發展初期,後續增量空間大。
趨勢5.信息安全領域需深層次防禦
汽車電子的運用及智能網聯化趨勢推進車載信息安全要求提升。汽車脫離孤立 單元后,隨之而來的是攻擊面的新增,一方面車輛聯網后其數據面臨被盜取、 泄露風險,另一方面電控系統普及后存在轉向、剎車等關鍵功能被外部控制的 可能性(例如破解車機、T-Box、網管后,向 CAN 發送惡意指令)。即接入汽車控制終端的 APP、網路系統、ECU 代碼均可能成為新攻擊向量。雲(車聯網 平台)-管(車聯網基礎設施)-端(車載智能及聯網設備)均存在信息安全問 題,將造成車輛功能性安全隱患:
(1)雲端與管端:接送關鍵數據的中央互聯網關直接連接至車企後台,部分第 三方公司被允許數據訪問。目前網聯實現通常會通過 APP 實現應用層功能(例 如解鎖車門、調用空調功能等),此時存在手機端與雲端的通信過程,且應用程 序供應商能直接訪問開放的相關數據介面。通過雲端和對外通信管端能對車機 端直接進行攻擊。
(2)車機端:當功能系統被授權時,黑客能對CAN匯流排發送相關指令控制ECU。騰訊道恩實驗室曾對特斯拉 Model S 進行過無物理破解實驗,以 Wifi 熱點接入 向車載娛樂系統植入軟體取得車機許可權,在破解網關后能控制其多個電控單元。
為抵禦外部攻擊需建立深層次的安全防禦系統,嚴控與功能安全及數據連接。汽車的防護措施隨交互信息增多其力度持續提升。車企安全團隊通常基於雲-管 -端對症建立安全防禦系統以應對外部攻擊:
(1)雲端:車載終端是汽車安全架構的核心,主要注意 T-BOX(用於車端和 外界通信)和 OBD(用於將汽車外部設備連接到 CAN 匯流排)兩大塊的信息防 護。實時進行入侵檢測,防止 DDos 攻擊。
(2)管端:汽車在未來將頻繁接入和退出網路節點,存在被篡改信息的風險。通常需要對通訊過程及傳輸數據進行加密,採用專門的 APN 接入網路。
(3)車機端:加強安全固件驗簽及防 root 機制,管理介面並建立監控體系。此外,可在車輛功能模塊上單設安全晶元對數控進行校驗。
部分第三方供應商能參與至信息安全環節。汽車安全防禦對於以特斯拉、蔚來、 小鵬等為代表的有互聯網基因的造車新勢力來說,擁有一定先天的優勢。包括 特斯拉在成立之初便組建了來自谷歌、微軟等互聯網企業的 40 人的網路安全專 家,小鵬和蔚來與阿里、騰訊等互聯網廠商進行深度合作,未來華為等供應商 是此領域的預備軍。目前網路安全系統仍缺乏標準的信息安全方案,原本的汽 車軟硬體供應商難以以統一標準滿足不同整車廠的信息安全要求,並且在測試 階段很難直接接入車企平台進行網路安全試驗。預計未來行業將有提供信息安 全方案、網路安全模塊以及某一特定領域防禦系統的第三方軟體供應商出現。
投資建議和推薦標的
百年汽車工業面臨由機械機器向電子產品過渡的新變局,在我們看不到的隱秘 角落——上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計 算單元,與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應 響應指令。近年來,SDV(軟體定義汽車)概念逐步被整車廠認知,根源在於 「汽車如何體現差異化」問題的變遷,硬體體系將逐漸趨於一致,軟體成為定 義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件拼合能力演變成將上億 行代碼組合運行的能力。
SDV 趨勢下汽車軟硬體分離重塑市場格局,盈利模式由硬體向持續賦予附加值 的軟體傾斜。主機廠愈發需具備軟體的管理能力及核心軟體設計能力,並引入 供應商及互聯網企業參與此環節,開發基礎平台並收取許可費用、供應功能模 塊按汽車出貨量 Royalty 收費及基於車企平台做定製化的二次開發均為未來主 流的軟體供應商盈利模式。預計 2030 年 500 億美元市場空間,復合增速 9%。
汽車最終會成為搭載「差異化元素」的通用化平台。一方面,ECU 里的功能模 塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面,車載娛樂 信息系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉,其深 層次的安全防禦(檢測和防禦網路攻擊)愈發重要。關於賦能域控制器、定位 車機系統的各項軟體性能升級,包括車內乙太網應用、整車 OTA 升級、信息交 互上雲及深層次的信息安全防禦等,或將帶來一系列發展機遇。
資料來源:https://m.news.sina.com.tw/article/20201001/36497492.html?fbclid=IwAR1zWwTMiTHwfLyqZ7Qx698UjYwI3v0c-hs3gXdy560Rf5BgAS4Ts4QLbOQ