⚡️人工智慧領域新藍海中,如何穩健踏入AI領域→深入培養及應用職場上所需的AI職能?為自己加值 🎯🎯>>> https://pse.is/3eukle
⚡️隨著巨量時代的到來,資料分析與探勘成為科技顯學,各行各業對於大數據的濃厚興趣也直接反映在大數據人才的豐厚薪資中....
⚡️36小時完整學習~邀您一起跨入AI領域~
~~~
🌈AI機器學習Machine Learning與深度學習Deep Learning
【課程網址】https://pse.is/3eukle
【開課日期】110/7/17~7/31
<<課程綱要>>----------------
●人工智慧介紹及股票趨勢預測實作
●非監督式學習與智慧教學助理實作
●深度學習介紹及智慧打卡系統實作
●機器視覺辨識介紹及實作人臉系統
●遞迴類神經網路介紹及時間序列預測實作
熱門課程推薦===============
📍六標準差GB綠帶實務班-含Minitab及R軟體實作
https://pse.is/3f8gmf
----------
📍MSA-GR&R品質測量系統分析實務應用
https://pse.is/3fhd58
----------
📍製造自動化與機器人實務培訓班
https://pse.is/3e2n85
-----------------
⛳️其它熱門課程推薦:(總表)
https://college.itri.org.tw/edm/D3/001/04/EDM.html
同時也有2部Youtube影片,追蹤數超過4萬的網紅呂冠緯 / 冠緯學長陪你學,也在其Youtube影片中提到,...
「r遞迴」的推薦目錄:
- 關於r遞迴 在 工研院科技學習 讚 Facebook 的最佳貼文
- 關於r遞迴 在 工研院科技學習 讚 Facebook 的最佳解答
- 關於r遞迴 在 李開復 Kai-Fu Lee Facebook 的精選貼文
- 關於r遞迴 在 呂冠緯 / 冠緯學長陪你學 Youtube 的精選貼文
- 關於r遞迴 在 呂冠緯 / 冠緯學長陪你學 Youtube 的最佳解答
- 關於r遞迴 在 Re: [分析] 雙向遞迴數列的推導問題- 看板Math 的評價
- 關於r遞迴 在 高一下數學1-1C觀念05後項=r*前項+d之遞迴關係 - YouTube 的評價
- 關於r遞迴 在 高一下數學1-1C觀念05後項=r*前項+d之遞迴關係 - YouTube 的評價
- 關於r遞迴 在 [演算法] Binary Search:在陣列中尋找特定元素 的評價
- 關於r遞迴 在 純靠北工程師 的評價
- 關於r遞迴 在 r-source/src/library/base/po/zh_TW.po at master 的評價
- 關於r遞迴 在 Parallel recursive function in R? 的評價
r遞迴 在 工研院科技學習 讚 Facebook 的最佳解答
⚡️人工智慧領域新藍海中,如何穩健踏入AI領域→深入培養及應用職場上所需的AI職能?為自己加值👉https://pse.is/3eukle
⚡️隨著巨量時代的到來,資料分析與探勘成為科技顯學,各行各業對於大數據的濃厚興趣也直接反映在大數據人才的豐厚薪資中....
⚡️36小時完整學習~邀您一起跨入AI領域~今年僅此一梯!
🌈AI機器學習Machine Learning與深度學習Deep Learning
【課程網址】https://pse.is/3eukle
【開課日期】110/5/22-6/05
<<課程綱要>>----------------
●人工智慧介紹及股票趨勢預測實作
●非監督式學習與智慧教學助理實作
●深度學習介紹及智慧打卡系統實作
●機器視覺辨識介紹及實作人臉系統
●遞迴類神經網路介紹及時間序列預測實作
熱門課程推薦===============
📍製造自動化與機器人實務培訓班
https://pse.is/3e2n85
----------
📍六標準差GB綠帶實務班-含Minitab及R軟體實作
https://pse.is/3f8gmf
----------
📍MSA-GR&R品質測量系統分析實務應用
https://pse.is/3fhd58
======
#AI #機器學習 #Machine Learning #深度學習 #Deep Learning
r遞迴 在 李開復 Kai-Fu Lee Facebook 的精選貼文
分享好文,中學生要學電腦嗎?
作者:創新工場CTO、人工智慧工程院執行院長 王詠剛
文章来自半轻人微信公众号(ban-qing-ren)
………………………………
朋友的孩子高中剛畢業,已拿到美國頂尖大學(非電腦專業)的錄取通知。疫情影響,不知何時才能去學校報到。孩子想抓緊學習一下程式設計,為大學打好基礎。這孩子找我聊了一個多小時,從如何學程式設計,聊到非電腦專業和電腦專業的路徑差異,又聊到如何從不同角度認識電腦與程式設計。聊得比較寬泛,不知是否對這孩子有用。
回想我自己的高中時代:那時雖迷戀程式設計,卻完全沒有懂行的人指導。在我們那個四線城市的廠礦中學裡,開設電腦興趣課的老師知道的資訊還沒我多。我高一時跑到北京中關村逛街,卻完全沒意識到中國第一代頂尖程式師當時就在我身邊的低矮辦公樓裡寫代碼(這話說得並不準確,比如求伯君那年就主要是在珠海做開發),鼎鼎大名的UCDOS、WPS、CCED就出自他們之手……我在當時街邊的一家書店(位置似乎就在今天的鼎好大廈對面)買到了許多種印刷品質極低劣的電腦圖書。用今天的標準看,那就是一批盜版影印或未授權翻譯的國外圖書。可那批書竟成了我高中時代最寶貴的程式設計知識來源。
顯然,我在高中時根本就是野路子學電腦。現在後悔也沒用,當時我的眼界或能觸及的資源就那麼多。如果能穿越回30年前,我該對喜歡程式設計的自己說些什麼呢?這些年,我與世界上最好的一批程式師合作過,也參與過世界上最有價值的軟體系統研發——我所積累的一些粗淺經驗裡,有哪些可以分享給一個愛程式設計的中學生?
【問題1】中學生要不要學電腦?
當然要!
每個中學生都要學。只不過——建議大部分中學生使用“休閒模式”,小部分(不超過10%)中學生使用“探險模式”。
啊?兩個模式?那我該進入哪個模式?⟹請跳轉至【問題2】
【問題2】選哪個模式?
你癡迷電腦嗎?比如,你玩遊戲時會特別想知道這遊戲背後的代碼是如何編寫的嗎?再比如,就算老師家長不同意你學電腦,甚至當著你的面把電腦砸了,你也要堅持學電腦嗎?如果是,恭喜你進入“探險模式”⟹請跳轉至【問題200】
你對數學有興趣嗎?比如,你看到街邊建築的曲線,就會在腦子裡琢磨曲線對應的函數或方程嗎?每當手裡攥著幾粒骰子,你就會不由自主地計算概率嗎?如果是,歡迎進入“探險模式”⟹請跳轉至【問題200】;當然,如果有些猶豫,也可以先進入“休閒模式”⟹請跳轉至【問題100】
即便你對電腦和數學興趣不大,家長、老師還是強烈建議你學電腦嗎?就算你一百個沒時間一千個不願意,家長、老師還是會逼著你學電腦嗎?如果是,建議你主動進入“休閒模式”並向家長、老師彙報說“我已經按照前谷歌資深軟體工程師的專業建議在認真學程式設計了”⟹請跳轉至【問題100】
其他情況,一律進入“休閒模式”。⟹請跳轉至【問題100】
【問題100】休閒模式 | 主要學什麼?
“休閒模式”將電腦視為我們生活、工作中的必備工具,主要學習如何聰明、高效、優雅地使用計算設備。這裡說的計算設備,包括所有形式的電腦、手機、遊戲機、智慧家電以及未來一定會進入生活的自動駕駛汽車。
什麼什麼?你已經會用電腦、會玩手機、會打遊戲了?別著急,慢慢往下看。
【問題101】休閒模式 | 我會用搜尋引擎嗎?
我知道你會用百度搜習題答案。但,習題答案不是知識。你會用搜尋引擎來搜索和梳理知識嗎?請試著用電腦和你喜歡的搜尋引擎來解決如下兩個問題:
(1)圓周率𝜋的計算方法有多少種?每種不同的計算方法分別是由什麼人在什麼時代提出的?借助電腦,今天人們可以將圓周率𝜋計算到小數點後多少位?將圓周率𝜋計算到小數點這麼多位元,一次大概需要花掉多少度電?
(2)全球大約有多少個廁所?在發展程度不同的國家,分別有多少比例的人可以享用安裝了抽水馬桶的衛生廁所?為什麼比爾·蓋茨曾大力推動一個設計新型馬桶的研發專案?比爾·蓋茨的公益組織在這個專案上大約花費了多少資金,最終收到了多大的效果?
如果你沒法快速得到上述問題的全部答案,那就給自己設一個小目標:一個月內,學會用搜尋引擎系統地獲取、梳理一組知識點的全部技巧。
【問題102】休閒模式 | 接下來學什麼?
建議學好典型的工具軟體。比如,我知道你會用Office了,但用Office和用Office是很不一樣的。對生活、學習、工作來說,學好、學透一個工具軟體比鑽研程式設計技巧更實用。
你會用Excel來管理班級公益基金的預算和實際收支情況嗎?
你會用Excel做出過去20年裡全球大學排名的演變趨勢圖嗎?
你會用Word排版一篇中學生論文嗎?論文中的圖表和最後的參考文獻部分該如何排版?
你會用Word編排一份班級刊物,包含封面、扉頁、目錄、插圖頁、附錄、封底等部分,可以在列印後直接裝訂成冊嗎?
PowerPoint呢?你有沒有研究過蘋果公司發佈會上那些幻燈片的設計?當約伯斯(多年以前)或蒂姆·庫克站在幻燈片前的時候,他們的演講思路是如何與幻燈片完美結合的?
還有哦,別忘了學學如何為數碼照片做後期,如何用電腦或手機剪視頻,如何為剪輯好的視頻配字幕,如何將照片、音樂、視頻等素材結合起來,做出一段吸引人的快手/抖音短視頻。
最後,抽空玩玩那些設計精妙的遊戲吧,比如《紀念碑穀》、《塞爾達傳說:曠野之息》之類;同時,遠離那些滿屏廣告,或者一心騙你在遊戲裡充值花錢的垃圾。
【問題103】休閒模式 | 不學學知識嗎?
當然要學知識。下面每種實用的電腦知識都夠大家學一陣子了。
(1)色彩知識:你知道同一張數碼照片在不同品牌的手機螢幕上、不同的電腦螢幕上、不同的智慧電視上顯示時,為什麼經常有較大色差嗎?你知道有一些色彩只適合螢幕顯示,不適合列印輸出嗎?你知道軟體工具裡常用的RGB、HSL之類的色彩空間都是什麼意思嗎?如何在設計PowerPoint幻燈片時選擇一組和諧美觀的色彩?
(2)字體知識:你知道什麼是襯線字體,什麼是無襯線字體嗎?你知道網頁中常用的英文字體都有哪些嗎?你知道商務演講時最適用于幻燈片的英文字體有哪些嗎?你知道電腦和手機常用的黑體、宋體、仿宋體、楷體等中文字體分別適合哪些實際應用場合嗎?你會將不同字體混排成一個美觀的頁面嗎?
(3)網路知識:你知道5G是什麼嗎?你知道5G和4G在通信頻寬、通信距離上的具體區別嗎?你知道什麼是路由器,什麼是防火牆嗎?你知道如何配置路由器,如何配置防火牆嗎?微信或QQ聊天時,對方發的文字、語音或視頻是如何傳送到你的手機上的?
(4)應用知識:淘寶中搜索得到的商品資訊是從哪裡來的?商品是按什麼方式排序的?為什麼購物APP經常會推薦給你一些曾經買過、看過的商品?你知道如何為自己建立個人網站嗎?你知道如何管理微信公眾號嗎?
(5)安全知識:你知道網路上的釣魚攻擊是怎麼回事兒嗎?你知道什麼是電腦漏洞嗎?你知道駭客為什麼想把一大批受攻擊的電腦變成可以遠端操控的傀儡機嗎?你知道為什麼現在很多手機APP都要通過短信發送驗證碼嗎?如果驗證碼被壞人截獲,你會面臨哪些風險?
這裡只是舉例。實用的電腦知識還有很多。大家可以自己發掘。
【問題104】休閒模式 | 我需要學程式設計嗎?
可以學,但不是必須。即便學,也只需要根據自己的需要,學那些最能幫你解決現實問題的部分。
【問題105】休閒模式 | 我該學什麼程式設計語言?
在“休閒模式”裡,電腦就是工具,程式設計也是工具,夠用就好。學什麼程式設計語言,完全看你想要電腦幫你做什麼。
• 如果你想對資料處理有更多自主權,那不妨學學Python;
• 如果你想做簡單的交互演示程式,那就先把JavaScript學起來;
• 如果你想更好、更快地寫論文,那不妨學學LaTeX(什麼什麼,LaTeX不是程式設計語言?你太小看LaTeX了);
• 如果你想學做簡單的手機APP,那麼,Android手機就學Java,蘋果手機就學Swift好了;
• 如果你只想知道程式設計是怎麼回事,那……從Python或JavaScript開始就行。其實,跟五六歲的小朋友一起學學Scratch圖形程式設計也不錯。
【問題106】休閒模式 | 我需要學人工智慧嗎?
在“休閒模式”裡,最需要學的不是“人工智慧的實現原理”,而是“什麼是人工智慧”,以及“人工智慧能做什麼,不能做什麼”。
• 在手機上試一試,人工智慧做語音辨識時能做到什麼水準?哪些話容易識別,哪些話不容易識別?
• 打開機器翻譯軟體,試一試哪些資訊翻譯得好,哪些資訊翻譯得不好?
• 手機上的拍照軟體一般都有人臉識別功能。試一試人臉識別在什麼場景下做得好,什麼場景下做得不好?
• 找一部講人工智慧的科幻電影,用自己的判斷解讀一下,電影裡哪些技術有可能成為現實,哪些技術存在邏輯矛盾。
【問題107】休閒模式 | 推薦什麼參考書、參考文獻?
書不重要,豆瓣評分7分以上的電腦應用、程式設計甚至科普類圖書都可以拿來翻翻。
直接在知乎裡搜索你想瞭解或學習的知識點可能更有效率。
如果你意猶未盡,覺得自己剛活動開筋骨,還想挑戰更高層次,歡迎進入“探險模式”。⟹請跳轉至【問題200】
否則,“休閒模式”到此結束。⟹請離開此問答
【問題200】探險模式 | 主要學什麼?
“探險模式”需要有挑戰精神。電腦科學的世界技術演進快,脈絡複雜,要想在探索時不迷路,你得通過有順序、有系統地學習電腦知識,慢慢構建出一張可以在未來幫你走得更遠的思維地圖來。
在“探險模式”裡,電腦就不止是一件能快速計算的工具了。電腦更像是我們大腦的一種延伸。這既包括認知能力的延伸,也包括認知邏輯的延伸。隨著學習深入,大家會逐漸體會到電腦所具有的多維度能力:
電腦是一種可以表示不同類型資訊(數、符號、文字、語音、圖像、視頻、虛擬空間、抽象邏輯)的“資訊管理機”;
同時,電腦也是一種可以連續執行指令以完成特定的資訊處理任務的“指令處理機”;
同時,電腦還是一種可以在知識與邏輯層面完成特定推理任務的“知識推理機”;
同時,電腦也是一種可以從人類給定的資料或自我生成的資料中總結規律,建立模型,自主完成某些決策的“智慧學習機”。
“探險模式”的目標就是盡可能準確地認識電腦,掌握有關電腦運行的最基本規律。有了這些基礎。未來在大學期間或工作中,你就能更容易地設計電腦軟硬體系統,或是設計出碳基大腦(人類)與矽基大腦(機器智慧)之間的最佳協作方案。
【問題201】探險模式 | 我的英語水準足夠嗎?
蘋果每年秋季的新品發佈會,不加字幕的話,你能聽懂多少?
能聽懂大部分:建議在學習電腦的過程中,盡可能使用英文教材、英文文檔。
能聽懂小部分:建議將原來準備學電腦的時間,分出一部分來學英語。
只能聽懂“你好”“再見”之類:⟹請離開此問答。然後,把原來準備學電腦的時間用於學英語,六個月後再回來。
【問題202】探險模式 | 我的數學水準足夠嗎?
如果你是數學和數學應用小能手——較複雜的數學問題總能快速找到核心思路,或快速簡化為簡單問題;很容易就能將抽象概念映射到具體的數學圖形,或將數學問題與相應的現實問題關聯在一起:請繼續探險之旅。
如果你應付正常數學課程感到吃力:建議將原來準備學電腦的時間,分出一部分來學數學。
如果你還搞不清楚什麼是方程、函數、集合、概率……:⟹請離開此問答。然後,把原來準備學電腦的時間用於學數學,六個月後再回來。
【問題203】探險模式 | 為什麼強調英語和數學?
(1)統計上說,最好的電腦參考資料大都是英文寫的,最好的電腦課程大都是用英文講的,最新的電腦論文大都是用英文發表的。
(2)函數、方程、坐標系、標量、向量、排列組合、概率這些中學數學裡會初步學習到的數學知識,是電腦科學的基礎。
【問題204】探險模式 | 電腦知識那麼多,正確的學習順序是什麼?
最重要的順序有兩個。建議先從順序一開始,學有餘力時兼顧兩個順序。
順序一:自底向上,即,自底層原理向上層應用拓展的順序。
電腦原理的基礎知識:
為什麼每台電腦(包括手機)都有CPU、記憶體和外部設備?
(馮·諾依曼體系結構的)記憶體中為什麼既可以存儲資料,也可以存儲指令?
CPU是如何完成一次加法運算的?
程式設計語言的基礎知識:
資料類型,值,變數,作用域……
語句,流程控制語句……
過程、方法或函數,類,模組,程式,服務……
編譯系統的基本概念:
電腦程式是如何被解釋或編譯成目標代碼的?
演算法和資料結構的基礎知識:
陣列,向量,鏈表,堆,棧,二叉樹,樹和圖……
遞迴演算法,排序演算法,二叉樹搜索演算法,圖搜索演算法……
應用層的基礎知識:
為什麼電腦需要作業系統?設備驅動程式是做什麼的?
網路通信的基本原理是什麼?流覽器是怎麼找到並顯示一個網頁的?
資料庫是做什麼用的?
虛擬機器是怎麼回事?
人工智慧系統的基礎知識:
先熟悉些線性代數、概率和數學優化的基礎知識。
什麼是機器學習?從簡單的線性回歸中體會機器學習的基本概念、基本思路。
什麼是神經網路?什麼是深度神經網路?為什麼神經網路可以完成機器學習任務?
如何使用PyTorch或TensorFlow實現簡單的深度學習功能?
順序二:自頂向下,即,自頂層抽象邏輯向下層具體邏輯拓展的順序。
• 電腦的本質是什麼?
• 什麼是圖靈機?什麼是通用圖靈機?
• 什麼是讀取﹣求值﹣輸出迴圈(Read–eval–print Loop,REPL)?
如何用自頂向下的方式理解(解析、解釋、編譯)一段程式碼?
• 靜態語言和動態語言的區別?
如何理解變數與資料類型之間的綁定關係?
• 什麼是函數式程式設計?
程式設計語言中,函數的本質是什麼?
函數為什麼可以像一個值一樣被表示、存儲、傳遞和處理?
• 什麼是物件導向?
類的本質是什麼?
如何用物件導向的方式定義個功能介面?
如何依據介面實現具體功能?
• 什麼是事件驅動?
什麼是事件?事件如何分發到接收者?
如何在事件驅動的環境中理解代碼的狀態和執行順序?
【問題205】探險模式 | 如何提高程式設計水準?
在掌握基本知識體系的基礎上,學好程式設計只有一條路:多程式設計,多參加程式設計比賽,多做程式設計題,多做實驗項目,多找實習機會——其中,能參與真實專案是最有價值的。
【問題206】探險模式 | 該從哪一門程式設計語言學起?
我個人推薦的程式設計入門語言(可根據情況任選):
Python
Java
Swift
C#
JavaScript / TypeScript
Ruby
……
可能不適合入門,但適合後續深入學習的語言:
C
C++
Go
Objective-C
組合語言
機器語言(CPU指令集)
Shell Script
Lua
Haskell
OCaml
R
Julia
Erlang
MATLAB
……
【問題207】探險模式 | 如何選參考書和參考資料?
(1)強烈推薦的參考書和參考資料:
• MIT、Stanford、CMU、UC Berkeley這四所大學中任何一個電腦專業方向使用的教學參考書或參考資料。網上可以查到這些學校電腦專業方向的課程體系,有的學校甚至公開了課程視頻。其中往往會列舉參考書和參考資料連結。
• 維琪百科(英文)上的數學、電腦科學相關條目。
• Github上star數在1000以上的開原始程式碼和開來源文件。
(2)強烈推薦但須小心辨別的參考資料:
知乎上的數學、電腦科學相關條目。使用時需要格外注意三件事:
儘量只看高贊答案或高贊文章;
辨別並避開廣告軟文;
辨別並避開純抖機靈的故事或段子。
Stack Overflow上的程式設計問題解答:
自己動手實驗,辨別解答是否有效。
CSDN上的程式設計問題解答:
自己動手實驗,辨別解答是否有效。
(3)其他推薦的參考書和參考資料:
國內專業作者寫作的專業技術書籍(豆瓣評分7分以上的)。
大廠(Google、Facebook、Microsoft、Amazon、阿裡、騰訊、百度、頭條等)資深工程師的技術公號、專欄、博客等。
著名圖書系列:如O’Reilly的動物封面的系列圖書(請注意最新版本和時效性)。
國內翻譯的著名技術圖書(譯本在豆瓣評分7分以上的)。
(4)儘量避免的參考書和參考資料:
• 已經過時的圖書或參考資料。
• 作者或譯者人數比章節數還多的專業圖書。
• 百度百科上的數學或電腦科學相關資料。
什麼什麼?你這篇問答居然沒有推薦一本具體的圖書?是,沒錯。如果你覺得即便有了上面的線索,自己還是找不到好書好資料,那也許你還是適合“休閒模式”⟹請跳轉至【問題100】
r遞迴 在 高一下數學1-1C觀念05後項=r*前項+d之遞迴關係 - YouTube 的推薦與評價

高一下數學1-1C觀念06後項= r *前項+d與等比數列的關係 · A nice Olympiad Math Problem Solved || Maths Olympiad Questions || Explored Maths · 咒數迴戰- ... ... <看更多>
r遞迴 在 高一下數學1-1C觀念05後項=r*前項+d之遞迴關係 - YouTube 的推薦與評價

高一下數學1-1C觀念05後項= r *前項+d之 遞迴 關係. 4.6K views · 9 years ago ...more. Try YouTube Kids. An app made just for kids. ... <看更多>
r遞迴 在 Re: [分析] 雙向遞迴數列的推導問題- 看板Math 的推薦與評價
※ 引述《znmkhxrw (QQ)》之銘言:
: 想請問有關雙向遞迴函數的綜合性跟推導問題
: 每個問題我都會下一個標題, 之後再進行詳細陳述, 最後加一些自己的猜測
: 順帶一提, 【問題三】是基於【問題二】的猜測是成立的
: 也是我主要想問的問題, 不過要先把【問題一、二】釐清才能講得清楚
: -------------------------------------------------------------------
: 【問題一】雙向遞迴函數是否給定初始值後就存在唯一
: 我們知道單向遞迴函數的(a) 存在性: by遞迴定理的變形
: (b) 唯一性: by數學歸納法
: 嚴格敘述即是: 令f:R^k X N→R為一函數, N是正整數集合, R是實數集合
: 則任給k個實數y_0~y_(k-1)
: 存在唯一的數列y_n:N→R
: 使得y_n = f(y_(n-1),...,y_(n-k),n) for all n>=k
: = y_i for n=0~k-1
: 以上是k階遞迴方程的一般式, 我為了跟雙向做比較, 稱上面叫作單向
: 而現在我們考慮雙向k階遞迴方程:
: 令g:R^k X Z→R為一函數, Z是整數集合, R是實數集合
: 則任給k個實數y_0~y_(k-1)
: 是否存在唯一的數列y_n:Z→R
: 使得y_n = g(y_(n-1),...,y_(n-k),n) for all n != 0~k-1
: = y_i for n=0~k-1
: 我先不在乎存在性, 光是唯一性就讓我覺得有顧慮了
: 假設有兩個數列y_n, Y_n滿足上式, 則數學歸納法只告訴我y_n = Y_n for n>=0
: n<0的部分完全無從檢驗, 因為整體的定義方向是正向的, 負向沒有g的反函數
: 這部分我有幾個猜測:
: (1) 我對雙向遞迴函數的定義有誤?
: (我一定要討論雙向, 因為涉及到後面訊號處理的數學問題)
: (2) 確實雙向遞迴函數不一定有唯一性, 而如果g是線性的, 就可以導出存在唯一性
: 例如: y_n = y_(n-1) + y_(n-3) + x_n
: y_0, y_1, y_2 given
: 則y_(n-3) = -y_(n-1) + y_n- x_n
: 因此就可以獲得負向傳播的資訊
: 【問題二】訊號處理中使用Z轉換解差分方程是唯一解
: wiki跟書本幾乎對於下列名詞一起討論:
: (a) Z轉換(Laurent級數的變數取倒數)
: (b) LTI, 線性差分方程, FIR, IIR
: (c) 轉移函數(transfer function)
: (d) 頻率響應
: 舉個例子: 考慮差分方程y_n = y_(n-1) + y_(n-2)
: 則同取Z轉換得到 Y(z) = Y(z)/z + Y(z)/z^2
: 因此得到Y(z) = 0
: 然後反Z轉換得到y_n = 0, 零數列, 確實是解
: 參考
: 再來敘述我所遇到的問題:
: 假設線性差分方程具有【問題一】的存在唯一性
: 即k階線性差分方程只是k階雙向遞迴方程的一種
: 並且任給k個初始值就會唯一決定整條數列
: 那不難知道:
: (1) 任給兩個滿足同一條k階線性差分方程的數列y_n, Y_n:Z→R
: 如果存在連續k個整數使得函數值相同, 那y_n = Y_n for all n€Z
: (存在唯一性定理的立即結論)
: (2) 同一條k階線性差分方程, 存在無窮多組解
: 但是!上面的結論跟Z轉換解差分方程是唯一解是矛盾的
: 因為如同我的舉例或是圖片, 取Z轉換後再反Z轉換回來, 得到的是唯一的y_n
: 沒有給你選擇k個初始值的地方
: 而我個人對於解釋矛盾的猜測如下:
: 矛盾來自於Z轉換解線性差分方程的嚴謹性
: 因為涉及: (a) 是否存在收斂圓環
: (b) 解析函數的相除
: (c) Z與反Z轉換的條件
: 所以綜合起來的解釋就是:
: 《線性差分方程有無窮多組解, 但是能讓(a),(b),(c)都過的解只有唯一一組》
: 也就是說: (A) Z轉換得到的解只是其中一組初始值所得到的解
: (B) 只有唯一一組初始值可以讓Z轉換解法well-defined
: (C) 線性差分方程中, 只有唯一一組初始值能寫成y_n = (h*x)_n的形式
: (這個推論是來自於Z轉換的性質, 數列摺積的Z轉換等於各自Z轉換相乘
: 這也是為什麼轉移函數是定義成y的Z轉換除以x的Z轉換)
: (D) 只有唯一一組初始值才是LTI系統
: (如果(C)對, 這個就對)
: 如果我以上的解釋是對的, 那我採用這些解釋當已知, 詢問下面的問題
: 【問題三】如果以上解釋是對的, 那如何解釋下面這些問題
: (1) 如何知道Z轉換解法的唯一解是由哪一組唯一的初始值得到的?
: 還是就是結果論去用Z轉換解出解, 自然就得到所有的值了
: (2) 工程實作上對於線性差分方程的處理如下:
: (a) 使用Z轉換得到轉移函數(如上面連結的H(z))
: 如果想要得到頻域響應, 就考慮|H(exp(iw)|
: (b) 實作時就是令初始值為0, 讓電腦去跑線性差分方程
: 那矛盾就來了, 用轉移函數得到的分析結果, 不就是默認你考慮的解y_n是唯一那組
: 可以用Z轉換解得的解, 那組解有那麼剛好初始值都是0?
: 我目前只能對這矛盾的猜測是:
: (1)《假設初始值為0的解就是Z轉換解得的解》
: 當然我如果是這假設還蠻不舒服的, 應該有其他道理
: (2) 不用假設, 初始值為0的解縱然跟Z轉換解得的解不同也沒關係
: (注意,如此一來就不是LTI系統, 因為只有Z轉換那組解才能寫成摺積)
: 因為會存在某種工程上可以接受的近似關係(那是什麼?)
: ---------------------------------------------------------
: 完全解決以上聯貫問題的1000p奉上
: 其他有幫助到我的idea也會p幣感謝
: 謝謝幫忙~做訊號處理以來卡最久的邏輯問題就是這塊了
: 終於整理出一個好詢問的脈絡了...
關於問題一
a[n]: Z->R
雙邊差分方程
a_k=f(v_k,n), a_i表示數列a[n]'s kth term
v_k=[a_0,a_1,....a_(k-1)]屬於 R^k
n屬於 Z
f: R^k x Z ->R (視情況要有好的條件)
線性常係數齊次時:
a_k=g(v_k) g: R^k ->R
且g(c*v_k)=c*g(v_k) for all c屬於R
像上面討論的線性常係數齊次方程可反向求回,具存在唯一性
不過對於一般的f(.)的唯一性
我好像找到一個簡單的反例:
a_n= sin( pi*(a_(n-1)) )
第一個數列 b_n=0 for all n屬於Z
第二個數列 c_n:
Let c_0=0 可得 c_i=0 ,for all i>=0
c_(-1)=1
c_(-2)=1/2
c_(-3)=arcsin(1/6) / pi
c_(-4)可以設定成 arcsin[c_(-3)] / pi
因為1/6<1/2 ,arcsin[c_(-3)]< pi/6
所以c_(-4)<1/6
Let c_(-n-1)= arcsin[c_(-n)] ,for n>=4
c_(-n)< 1/6< 1/2
arcsin[c_(-n)]< pi/6
所以c_(-n-1)< 1/6
Obviously, c_(-n)>0 ,for n<0
Hence, 0 <c(-n)<1/6 and well-defined for n屬於Z
得到c_n!=b_n 但滿足相同雙邊差分方程
至於問題二三....
我從最簡單等差級數下手 a_(n+1)=a_n+1
但bilateral Z transform does'nt work for constant......
unilateral還能解
所以應該是V大和z大討論的結果,因ROC有所限制也同時限制了可以解的DE
至於詳細bilateral Z transform做出來的到底是符合甚麼初始條件和對應的h..
感覺要細究很多z大所提及的那些限制 是否holomorphic ROC限制transform是否存在等..
本人力有未逮 非本人之能力所及 補眠去 加油
不過還是可以做一個小結
如果連1st-order DE 和 sin()這麼好 滿足各種存存在唯一性需要條件的函數
都沒辦法讓他的 雙邊數列 解(x_n) 有唯一性的話
那其實也不用去考慮初始條件
因為不管你選哪一段(k階k個)初始條件 都只能往後面確保唯一性
(如果雙邊遞迴用這個定義)
無論考慮哪一段 前面總可能跑出多個可能
所以初始條件完全不能保証前面的項
取而代之 就變成存在性比較重要了 至少存在就好
平常起手勢 用Z-transform 轉到frequency domain拿到response
之後讓初始條件為零去跑 就至少得到一個解往後的資訊
前面反向資訊就算有初始條件他也可能不是唯一的
而且bilateral Z-transform 這個mechanism works 也挺嚴格的
就是ROC和上面講的那些...
通過後就有存在性了
他變成一個多對一的結果(Perhaps)
以前學PDE的時候也沒在管所有解也不一定有唯一性了(還有更多沒有存在性)
我是在想z大是否想回推反向資訊才在意唯一項問題 看是否能用初始條件確保?
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 203.204.39.221 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1662776374.A.935.html
※ 編輯: bluepal (203.204.39.221 臺灣), 09/10/2022 19:01:04
※ 編輯: bluepal (203.204.39.221 臺灣), 09/10/2022 21:53:26
... <看更多>